January 2012 Problem E1

J. Alexander Jacoby ${ }^{1}$
${ }^{1}$ Department of Physics, Princeton University, Princeton New Jersey 08544, USA

(Dated: September 22, 2023)
This solution is pure gimmick, but it is kind of cute in my opinion.

This problem taps us on the face and says: PLEASE USE SEPARATION OF VARIABLES. We choose not to do this for fun. It is of some value to rescale these coordinates to more "natural" dimensionless choices. We choose $\tilde{y}=\frac{2 \pi y}{b}$. The choice of scaling for z does not actually matter, so we choose $\tilde{z}=\frac{2 \pi z}{b}$ to avoid rescaling the derivatives relative to one another (and the zero on the other side of Laplace's equation doesn't mind this either). We know that along the plane $z=a$ the solution will not depend on x and the solution must also vanish at $z=0$. Since the solution is periodic in y, we demand a real exponential behaviour in z and sinusoidal(ish) behaviour in y. This suggests something like $e^{k \tilde{z}}-e^{-k \tilde{z}}$ (not the actual result yet). For the \tilde{y} dependence, things are more complicated. I have been obsessed with the formula, $\sqrt{\pi / 2} \sum_{n} \frac{\sin (\pi(2 n+1) x)}{2 n+1}$, for a very long time and this is one of the first times it has ever come in useful. It is the Fourier decomposition of a square wave. And we need the solution to turn into a squarewave at $z=a$. How convenient. Anyway, now the trick is just to stitch these solutions together. Given the

FIG. 1. Graph of $\sqrt{\pi / 2} \sum_{n} \frac{\sin (\pi(2 n+1) x)}{2 n+1}$
rescaling of our variables we can see that

$$
\begin{equation*}
\phi(x, y, a)=\sum_{n} V_{0} \sqrt{\pi / 2} \frac{\sin ((2 n+1) \tilde{y})}{2 n+1} . \tag{1}
\end{equation*}
$$

So now we select the solutions $\phi=\sum_{n} V_{0} \sqrt{\pi / 2} \frac{\sin ((2 n+1) \tilde{y})}{2 n+1}\left[e^{(2 n+1) \tilde{z}}-e^{-(2 n+1) \tilde{z}}\right]$. But this doesn't quite nail things either. We can fix our work by setting the coefficient $\left(A_{n}\right)^{-1}=e^{\tilde{a}}-e^{-\tilde{a}}$. At this point, we recognize this solution as

$$
\begin{equation*}
\phi=V_{0} \sqrt{\pi / 2} \sum_{n}\left(\frac{\sin ((2 n+1) \tilde{y})}{2 n+1}\right)\left(\frac{\sinh [(2 n+1) \tilde{z}]}{\sinh [(2 n+1) \tilde{a}]}\right) . \tag{2}
\end{equation*}
$$

This solution is the desired one because it meets the boundary conditions (can be easily enough seen) and it has

$$
\begin{align*}
& \partial_{\tilde{y}}^{2} \sum_{n}\left(\frac{\sin ((2 n+1) \tilde{y})}{2 n+1}\right)\left(\frac{\sinh [(2 n+1) \tilde{z}]}{\sinh [(2 n+1) \tilde{a}]}\right)=-\sum_{n}(2 n+1) \sin ((2 n+1) \tilde{y})\left(\frac{\sinh [(2 n+1) \tilde{z}]}{\sinh [(2 n+1) \tilde{a}]}\right) \\
& \partial_{\tilde{z}}^{2} \sum_{n}\left(\frac{\sin ((2 n+1) \tilde{y})}{2 n+1}\right)\left(\frac{\sinh [(2 n+1) \tilde{z}]}{\sinh [(2 n+1) \tilde{a}]}\right)=\sum_{n}(2 n+1) \sin ((2 n+1) \tilde{y})\left(\frac{\sinh [(2 n+1) \tilde{z}]}{\sinh [(2 n+1) \tilde{a}]}\right) \tag{3}
\end{align*}
$$

which implies it obeys Laplace's equation. Tidy.

- Summary

Problem includes: nothing particularly nutritional (like lettuce).

