(a) Since $f<0$, the minimum-energy spin configuration will be the one with the greatest value of $\hat{S}_{3}^{(a)}-\hat{S}_{3}^{(b)}$. This occurs when we have eigenstates of \hat{S}_{3}, specifically with $m_{a}=s_{a}, m_{b}=-s_{b}$. We may compute the expectation value as follows:

$$
\begin{align*}
\hat{S}^{2} & =\left(\hat{\mathbf{S}}^{(a)}+\hat{\mathbf{S}}^{(b)}\right)^{2} \tag{1}\\
\hat{S}^{2} & =\hat{S}^{(a) 2}+\hat{S}^{(b) 2}+2 \hat{\mathbf{S}}^{(a)} \cdot \hat{\mathbf{S}}^{(b)} \tag{2}\\
\hat{S}^{2} & =\hat{S}^{(a) 2}+\hat{S}^{(b) 2}+2\left(\hat{S}_{1}^{(a)} \hat{S}_{1}^{(b)}+\hat{S}_{2}^{(a)} \hat{S}_{2}^{(b)}\right)+2 \hat{S}_{3}^{(a)} \hat{S}_{3}^{(b)} \tag{3}\\
\left\langle\hat{S}^{2}\right\rangle & =\left\langle\hat{S}^{(a) 2}\right\rangle+\left\langle\hat{S}^{(b) 2}\right\rangle+2\left\langle\hat{S}_{1}^{(a)} \hat{S}_{1}^{(b)}+\hat{S}_{2}^{(a)} \hat{S}_{2}^{(b)}\right\rangle+2\left\langle\hat{S}_{3}^{(a)} \hat{S}_{3}^{(b)}\right\rangle \tag{4}\\
\left\langle\hat{S}^{2}\right\rangle & =\hbar^{2}\left(s_{a}\left(s_{a}+1\right)+s_{b}\left(s_{b}+1\right)-2 s_{a} s_{b}\right)+\left\langle\hat{S}_{1}^{(a)} \hat{S}_{1}^{(b)}+\hat{S}_{2}^{(a)} \hat{S}_{2}^{(b)}\right\rangle \tag{5}
\end{align*}
$$

Since we have eigenstates of the z-component of spin, azimuthal symmetry guarantees that the latter dot product term expectation value vanishes. Thus our final answer is

$$
\begin{equation*}
\left\langle\hat{S}^{2}\right\rangle=\hbar^{2}\left[\left(s_{a}-s_{b}\right)^{2}+s_{a}+s_{b}\right] \tag{6}
\end{equation*}
$$

(b) If $s_{a}=1, s_{b}=1 / 2$, then the allowed total angular momentum quantum numbers are $j=1 / 2,3 / 2$. The relation $\hat{S}^{2}|j, m\rangle=\hbar^{2} j(j+1)|j, m\rangle$ demonstrates that the relevant eigenvalues are

$$
\begin{equation*}
\frac{3 \hbar^{2}}{4}, \frac{15 \hbar^{2}}{4} \tag{7}
\end{equation*}
$$

In the ground state $m_{a}=s_{a}, m_{b}=-s_{b}$, so $m_{a}=+1, m_{b}=-1 / 2$. To compute the probabilities, let us work out the Clebsch-Gordan coefficients for this case. We start with $j=3 / 2$ for which there is only one possibility:

$$
\begin{equation*}
\left|\frac{3}{2},+\frac{3}{2}\right\rangle=|1,+1\rangle \otimes\left|\frac{1}{2},+\frac{1}{2}\right\rangle \tag{8}
\end{equation*}
$$

Applying the lowering operator to both sides yields

$$
\begin{align*}
\sqrt{3}\left|\frac{3}{2},+\frac{1}{2}\right\rangle & =\sqrt{2}|1,0\rangle \otimes\left|\frac{1}{2},+\frac{1}{2}\right\rangle+|1,+1\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle \tag{9}\\
\left|\frac{3}{2},+\frac{1}{2}\right\rangle & =\sqrt{\frac{2}{3}}|1,0\rangle \otimes\left|\frac{1}{2},+\frac{1}{2}\right\rangle+\sqrt{\frac{1}{3}}|1,+1\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle \tag{10}
\end{align*}
$$

This allows us to find the $\left|1 / 2,+^{1} / 2\right\rangle$ state, since it must also be a linear combination of those two kets but further has to be orthogonal to $\left|3 / 2,+^{1 / 2}\right\rangle$. Thus we obtain, up to a phase,

$$
\begin{equation*}
\left|\frac{1}{2},+\frac{1}{2}\right\rangle=-\sqrt{\frac{1}{3}}|1,0\rangle \otimes\left|\frac{1}{2},+\frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}|1,+1\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle \tag{11}
\end{equation*}
$$

We now see that our $m_{a}=+1, m_{b}=-1 / 2$ state can be written as

$$
\begin{equation*}
|1,+1\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\sqrt{\frac{1}{3}}\left|\frac{3}{2},+\frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}\left|\frac{1}{2},+\frac{1}{2}\right\rangle \tag{12}
\end{equation*}
$$

This is the Clebsch-Gordan decomposition of the ground state we were looking for. The probability that $j=1 / 2$ is simply the $2 / 3$ coefficient we see above and for $j=3 / 2$ the $1 / 3$. To summarize:

$$
\begin{array}{r}
P\left(\frac{3 \hbar^{2}}{4}\right)=\frac{2}{3} \\
P\left(\frac{15 \hbar^{2}}{4}\right)=\frac{1}{3} \tag{13b}
\end{array}
$$

Note that our expectation value is $7 \hbar^{2} / 4$, consistent with our formula from Part (a).

