Problem M18E.2

(a) We may assume point charges (i.e. $R=0$) since the field outside the spheres is unchanged under this assumption. The dipole moment of the dumbbell is $p=Q d$, so that

$$
\ddot{\mathbf{p}}=\omega^{2} \mathbf{p}
$$

Then the Poynting vector at far-field is

$$
\mathcal{S}=\frac{\mu_{0}}{16 \pi^{2} r^{2} c}|\ddot{\mathbf{p}} \times \hat{\mathbf{r}}|^{2} \hat{\mathbf{r}}=\frac{\mu_{0} \omega^{4}}{16 \pi^{2} r^{2} c}(Q d)^{2} \sin ^{2} \theta \hat{\mathbf{r}},
$$

where θ is the angle between \mathbf{p} and $\hat{\mathbf{r}}$. Integrating over all outgoing directions gives

$$
\mathcal{P}=\frac{\mu_{0} \omega^{4} Q^{2} d^{2}}{6 \pi c} .
$$

(b) The magnetic dipole moment of the magnet is $m=M \pi R^{2} d$. As in part (a), the Poynting vector at far-field is

$$
\mathcal{S}=\frac{\mu_{0}}{16 \pi^{2} r^{2} c^{3}}|\ddot{\mathbf{m}} \times \hat{\mathbf{r}}|^{2} \hat{\mathbf{r}}=\frac{\mu_{0} \omega^{4}}{16 \pi^{2} r^{2} c^{3}}\left(M \pi R^{2} d\right)^{2} \sin ^{2} \theta \hat{\mathbf{r}},
$$

so the total radiated power is

$$
\mathcal{P}=\frac{\mu_{0} \pi \omega^{4} M^{2} R^{4} d^{2}}{6 c^{3}} .
$$

The magnetic quadrupole moment is suppressed by an additional factor of $(v / c)^{2}$, and is negligible for a mechanical object.
(c) The charge on each sphere satisfies

$$
\begin{aligned}
V & =\int_{R}^{\infty}(\mathbf{E} \cdot \hat{\mathbf{r}}) \mathrm{d} r \\
& =\int_{R}^{\infty} \frac{Q}{4 \pi \epsilon_{0} r^{2}} \mathrm{~d} r \\
& =\frac{Q}{4 \pi \epsilon_{0} R},
\end{aligned}
$$

so that

$$
Q=4 \pi \epsilon_{0} R V \sim 110 \mathrm{nC}
$$

We have

$$
\omega^{4}=(2 \pi)^{4}(10 \mathrm{kHz})^{4} \sim 1.6 \times 10^{19} \mathrm{~s}^{-1}
$$

so that

$$
\mathcal{P} \sim 40 \mathrm{pW} .
$$

The magnetization of the cylinder satisfies

$$
M=B / \mu_{0} \sim 800 \mathrm{kA} / \mathrm{m}
$$

so that

$$
\mathcal{P} \sim 24 \mu \mathrm{~W}
$$

The permanent magnet radiates about 6×10^{5} times more power.

