
Problem M17Q.2
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We may verify that
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as desired.

(b) In the Heisenberg picture, we have
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Define the operator
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so that
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In particular, if
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forcing z(t)ψ(q) = 0 identically as desired. Letting y := αℏ/m, the differential equation
(*) becomes

−y2 + iy′ + ω2 = 0, (**)

which always has a solution by the Picard-Lindelöf theorem.

(c) It remains to solve the differential equation (**). This equation is separable and rearranges
to
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For Re{z} > 0, recall that that tanh z = i tan(−iz) is π-periodic in Im{z}, and takes real
values precisely when 2 Im{z} ∈ πZ.

Thus α(t) is real if and only if t is a multiple of t0 := π/(2ω). For even multiples of t0,
we have α(t) = α(0). For odd multiples of t0, we have
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Thus the particle alternates between highly localized states for even multiples of t0, and
highly spread-out states at odd multiples of t0.
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