Problem M17Q.2

(a) We first integrate

$$
\int_{-\infty}^{\infty} \psi(q)^{2} \mathrm{~d} q=C^{2} \sqrt{\frac{1}{\alpha}} \int_{-\infty}^{\infty} \exp \left(-u^{2}\right) \mathrm{d} u=C^{2} \sqrt{\frac{\pi}{\alpha}}
$$

where $u:=q \sqrt{\alpha}$. Thus $C=(\alpha / \pi)^{1 / 4}$. Then

$$
\begin{aligned}
(\delta q)^{2} & =\left\langle q^{2}\right\rangle \\
& =\int_{-\infty}^{\infty} q^{2} \psi(q)^{2} \mathrm{~d} q \\
& =\frac{1}{\alpha} \sqrt{\frac{1}{\pi}} \int_{-\infty}^{\infty} u^{2} e^{-u^{2}} \mathrm{~d} u \\
& =\frac{1}{2 \alpha}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
(\delta p)^{2} & =\left\langle p^{2}\right\rangle \\
& =-\hbar^{2} \int_{-\infty}^{\infty} \psi(q) \partial_{q}^{2} \psi(q) \mathrm{d} q \\
& =\alpha \hbar^{2} \sqrt{\frac{1}{\pi}} \int_{-\infty}^{\infty}\left(1-u^{2}\right) e^{-u^{2}} \mathrm{~d} u \\
& =\frac{\alpha \hbar^{2}}{2}
\end{aligned}
$$

We may verify that

$$
(\delta p)(\delta q)=\frac{\hbar}{2}
$$

as desired.
(b) In the Heisenberg picture, we have

$$
-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} q=[H, q]=\frac{1}{2 m}\left[p^{2}, q\right]=\frac{-i \hbar}{m} p
$$

and similarly

$$
-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} p=[H, p]=\frac{1}{2} m \omega^{2}\left[q^{2}, p\right]=i \hbar m \omega^{2} q
$$

Define the operator

$$
z(t):=\alpha(t) q(t)+i \frac{p(t)}{\hbar}, \quad \text { so that } \quad z(0) \psi(q)=0
$$

We directly compute

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} z(t) & =\alpha^{\prime}(t) q(t)+\alpha(t) \frac{p(t)}{m}-\frac{i m \omega^{2}}{\hbar} q(t) \\
& =-i \frac{\hbar}{m} \alpha(t) z(t)+\left[i \frac{\hbar}{m} \alpha(t)^{2}+\alpha^{\prime}(t)-\frac{i m \omega^{2}}{\hbar}\right] q(t) .
\end{aligned}
$$

Thus define the function

$$
I(t):=\frac{i \hbar}{m} \int_{0}^{t} \alpha(s) \mathrm{d} s
$$

so that

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[e^{I(t)} z(t)\right] & =e^{I(t)}\left[\frac{i \hbar}{m} \alpha(t) z(t)+z^{\prime}(t)\right] \\
& =e^{I(t)}\left[i \frac{\hbar}{m} \alpha(t)^{2}+\alpha^{\prime}(t)-\frac{i m \omega^{2}}{\hbar}\right] q(t) .
\end{aligned}
$$

In particular, if

$$
\begin{equation*}
i \frac{\hbar}{m} \alpha(t)^{2}+\alpha^{\prime}(t)-\frac{i m \omega^{2}}{\hbar}=0 \tag{}
\end{equation*}
$$

then

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[e^{I(t)} z(t) \psi(q)\right]=0
$$

forcing $z(t) \psi(q)=0$ identically as desired. Letting $y:=\alpha \hbar / m$, the differential equation ${ }^{*}$) becomes

$$
\begin{equation*}
-y^{2}+i y^{\prime}+\omega^{2}=0, \tag{**}
\end{equation*}
$$

which always has a solution by the Picard-Lindelöf theorem.
(c) It remains to solve the differential equation $\left({ }^{* *}\right)$. This equation is separable and rearranges to

$$
-i t=\int \frac{\mathrm{d} y}{y^{2}-\omega^{2}}=-\tanh ^{-1}(y / \omega) / \omega+c
$$

which rearranges to

$$
y(t)=\omega \tanh (\omega(i t+c)) .
$$

To match initial conditions, we choose

$$
c:=\omega^{-1} \tanh ^{-1}\left(\alpha(0) \frac{\hbar}{m \omega}\right)>0 .
$$

For $\operatorname{Re}\{z\}>0$, recall that that $\tanh z=i \tan (-i z)$ is π-periodic in $\operatorname{Im}\{z\}$, and takes real values precisely when $2 \operatorname{Im}\{z\} \in \pi \mathbb{Z}$.

Thus $\alpha(t)$ is real if and only if t is a multiple of $t_{0}:=\pi /(2 \omega)$. For even multiples of t_{0}, we have $\alpha(t)=\alpha(0)$. For odd multiples of t_{0}, we have

$$
y(t)=\omega \tanh \left(\omega c+i \frac{\pi}{2}\right)=\omega \operatorname{coth}(\omega c)=\frac{\omega}{\alpha(0) \hbar / m \omega},
$$

so that

$$
\alpha(t)=\frac{m^{2} \omega^{2}}{\alpha(0) \hbar^{2}} .
$$

Thus the particle alternates between highly localized states for even multiples of t_{0}, and highly spread-out states at odd multiples of t_{0}.

