PROBLEM M17Q.2

(a) We first integrate
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We may verify that
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as desired.

(b) In the Heisenberg picture, we have
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Define the operator

2(t) == a(t) q(t) + z'p%t), so that z(0)v(q) = 0.

We directly compute
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Thus define the function _—
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so that

In particular, if
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forcing z(t) ¥ (q) = 0 identically as desired. Letting y := ah/m, the differential equation
(*) becomes

—? iy +w? =0, ()
which always has a solution by the Picard-Lindel6f theorem.

It remains to solve the differential equation (**). This equation is separable and rearranges
to

. dy .
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which rearranges to
y(t) = wtanh(w (it + ¢)).

To match initial conditions, we choose
-1 -1 h
c:=w tanh™ [ a(0)— ) > 0.
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For Re{z} > 0, recall that that tanh z = i tan(—iz) is m-periodic in Im{z}, and takes real
values precisely when 2Im{z} € 7Z.

Thus «(t) is real if and only if ¢ is a multiple of ¢y := 7/(2w). For even multiples of ¢y,
we have a(t) = a(0). For odd multiples of ¢y, we have

s w
y(t) = wtan (wc+z2) w coth(we) ()’
so that
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Thus the particle alternates between highly localized states for even multiples of tg, and
highly spread-out states at odd multiples of ¢g.



