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In this problem we are given a 2D surface with electron energies

ε = ε0 ± vF |p|

Given fixed p, there are two energies ε±. At each energy there is a four-fold degeneracy, two from spin-1/2
and two from ‘the valley index’. 1

The figure shows the allowed energies in a graphene lattice. Our energy relation comes from approximating
the surface to be a cone near lattice points, in k-space. This is called the Dirac cone in literature. It has
slope vF , dimensions [p/m], and is called the Fermi velocity.

We are asked to find the specific heat as T → 0 for (a) electrons with pF > 0, (b) electrons at pF = 0,
and (c) phonons (additional information given below).

(a) To find the specific heat cV = dU/dT , we need to write down an expression for U = 〈ε〉, which is
derived from fermi-dirac statistics. Let’s start with the density of states

ρ(ε)dε = g
d2k

(2π)2
=
gkdk

2π

The degeneracy g = 4 is given, and

k =
|ε− ε0|
h̄vF

> 0

Therefore the density of states is

ρ(ε) =
2|ε− ε0|
πh̄2v2F

We can use this to write

U =

∫ ∞
0

fFD(ε)ρ(ε)εdε =
2

πh̄2v2F

∫ ∞
0

ε|ε− ε0|dε
eβ(ε−µ) + 1

At low temperature β →∞ and µ = εF , which necessarily takes the positive energy band

εF = ε0 + vF pF

1This arises from the lattice structure. 2D graphene atoms arrange themselves in a hexagonal honeycomb. The ‘smallest
site’ has two atoms (a line segment), whether the electron occupies atom A or atom B produces the same energy. This gives a
factor of 2 to degeneracy. You can read more about graphene here.
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We approach this integral using the Sommerfield expansion 2

U =

∫ µ

−∞
ρ(ε)εdε+

π2

6
(kT )2

d

dε
[ρ(ε)ε|µ +O(T 4)

The first term is an integral that blows up at ε→ −∞. We can ignore this for two reasons: (1) this term is
constant with respect to T , and therefore disappears from the specific heat (2) the singularity for large |ε|
is unphysical. It appears only as a relic from the Dirac cone approximation, but energy and ρ(ε) are clearly
bounded every where in the lattice (see figure).

So we can compute the derivative

d

dε
[ρ(ε)ε|µ =

2(ε0 + 2vF pF )

πh̄2v2F

where we have taken µ = ε0 + vF pF . Now

U = U0 +
π(ε0 + 2vF pF )

3h̄2v2F
(kT )2

therefore the low temperature heat capacity is

cV =
∂U

∂T
=

2πk2(ε0 + 2vF pF )

3h̄2v2F
T

Since the zero-point energy is arbitrary, we could set ε0 = 0 and have

cV =
4πk2pF

3h̄2vF
T

here vF is the Fermi velocity and pF > 0 is the Fermi momentum.

(b) When pF = 0 we cannot use the Sommerfield expansion, because d
dε (ρε) is undefined at the cusp of

the cone. Instead we have the special case µ = εF = ε0. This means µ is independent of T , and we can take
d/dT inside the integral. 3 As before

U =
2

πh̄2v2F

∫ ∞
0

ε|ε− ε0|dε
eβ(ε−µ) + 1

setting µ = ε0 and collecting constants A = 2/πh̄2v2F

U = A

∫ ∞
−ε0

(x+ ε0)|x|dx
eβx + 1

Now
dU

dT
= Akβ2

∫ ∞
−ε0

eβx

(eβx + 1)2
x(x+ ε0)|x|dx

2derived below
3Here we only need to take derivatives of β. In part (a), there was have been an additional µ(T ) dependence. That’s why

we had to use the Sommerfield expansion to do the integral first, before taking d/dT .
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Recognize that ey/(ey+1)2 is even. 4 In the low temperature limit β →∞ we can stretch the integration
bound to

∫∞
−∞ dε. Now the second term

I2 = Akβ2

∫ ∞
−∞

eβx

(eβx + 1)2
x|x|dx = 0

because x|x| is odd. So we are left with just the first term

I1 = Akβ2

∫ ∞
−∞

eβx

(eβx + 1)2
x2|x|dx

= 2Akβ2

∫ ∞
0

eβx

(eβx + 1)2
x3dx

= 2A
∂

∂T

∫ ∞
0

x2

eβx + 1
dx

= 2A
∂

∂T

(
1

β3

∫ ∞
0

y2dy

ey + 1

)
Define a family of integrals

C±m =

∫ ∞
0

ym

ey ± 1
dy

Although y = β(ε− ε0), the β dependence vanishes in this dimensionless integral. Therefore

I1 = 2AC+
2

∂

∂T
(kT )3 = 6AC+

2 k
3T 2

recalling cV = dU/dT = I1 + I2 one finds

cV =

(
12k3C+

2

πh̄2v2F

)
T 2

In summary cV ∝ T for pF > 0, but cV ∝ T 2 when pF = 0. These are the electronic contributions to specific
heat of graphene at low temperatures.
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ey

(ey + 1)2
=

1

(ey + 1)(e−y + 1)
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(c) Phonons have 2D longitudinal and transverse waves

ω = vLq

ω = vT q

where q = |~q| is the wavenumber magnitude. There is an also a low frequency mode with displacements
normal to the sheet

ω = Kq2

Let us compute the density of states independently. For the linear modes E = h̄ω = h̄vq. Therefore

qdq

2π
=
h̄2v2

2π
EdE

and

ρ1(ε) =
h̄2v2

2π
ε

For the quadratic modes E = h̄ω = h̄Kq2. Therefore

qdq

2π
=

dE

4πh̄K

and

ρ2(ε) =
1

4πh̄K

the density of states is constant! 5 Phonons are bosons. We can compute the Bose-Einstein statistics

U =

∫ ∞
0

1

eβ(ε−µ) − 1
ρ(ε)εdε

We need µ < 0 for convergence. But at low temperatures we can put µ arbitrarily close to 0.6 Then

U2 =

∫ ∞
0

ε

eβε − 1

dε

4πh̄K
=

C−1
4πh̄K

1

β2

and

U1 =
h̄2v2

2π

∫ ∞
0

ε2dε

eβε − 1
=
h̄2v2

2π

C+
2

β3

At low temperatures β → ∞ and the quadratic modes dominate. Therefore the heat capacity dU/dT is to
leading order

cV =

(
k2C−1
2πh̄K

)
T

5this must be a low frequency approximation
6I have no proof for this
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1 note

Given a Fermi-Dirac distribution, the Sommerfield expansion solves integrals

I =

∫ ∞
0

fFD(ε)φ(ε)dε

where φ is any smooth function of ε (in our problem φ = ρε). Let us recall the Fermi-Dirac distribution

fFD =
1

eβ(ε−µ) + 1

looks like a step function, and its derivative F = dfFD/dε behaves like a δ-function centered at ε = µ with
width 1/β = kT . To leverage this we take an integration by parts

I = [f(ε)ψ(ε)]∞0 −
∫ ∞
0

F (ε)ψ(ε)dε = −
∫ ∞
−∞

F (ε)ψ(ε)dε

where

ψ(ε) =

∫ ε

0

φ(ε′)dε

is defined such that dψ/dε = φ(ε). Evidently ψ(0) = 0 and F (±∞) = 0. This allows us to drop the constant
and stretch the integration bound, which will be useful later on.

Now letting x = ε− µ we compute

F =
−βeβx

(eβx + 1)2
=

−β
(eβx + 1)(e−βx + 1)

and Taylor expand about µ

ψ =

∞∑
m=0

1

m!

dmψ

dεm

∣∣∣∣
µ

(ε− µ)m

Since F is even, all odd terms in ψ drop from
∫∞
−∞ dε. Now

I = −
∫ ∞
−∞

F (ε)ψ(ε)dε =

∫ ∞
−∞

∞∑
m=0

ψ(m)(0)

m!

βxm

(eβx + 1)(e−βx + 1)
dx

=

∞∑
m=0

ψ(m)(0)

m!βm

∫ ∞
−∞

ymdy

(ey + 1)(e−y + 1)

=

∞∑
m=0

ψ(m)(0)

m!βm
Im

Here we access known dimensionless integrals

Im =

∫ ∞
−∞

ymdy

(ey + 1)(e−y + 1)

where I0 = 1, I2 = π2/3, and Im = 0 if m is odd. Therefore

I = ψ(µ)I0 +
1

2β2
ψ′′(µ)I2 +

1

4!β4
ψ(4)(µ)I4 + . . .

=

∫ µ

0

φ(ε)dε+
π2

6
φ′(µ)(kT )2 +O(T 4)

This is the Sommerfield expansion. 7

7Big thanks to Yichen Fu and Fang Xie for their insights on this problem.
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