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In this problem we are given a 2D surface with electron energies
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Given fixed p, there are two energies e1. At each energy there is a four-fold degeneracy, two from spin-1/2
and two from ‘the valley index’. !

The figure shows the allowed energies in a graphene lattice. Our energy relation comes from approximating
the surface to be a cone near lattice points, in k-space. This is called the Dirac cone in literature. It has
slope vp, dimensions [p/m], and is called the Fermi velocity.

We are asked to find the specific heat as T'— 0 for (a) electrons with prp > 0, (b) electrons at pp = 0,
and (c) phonons (additional information given below).

(a) To find the specific heat ¢y = dU/dT, we need to write down an expression for U = (e), which is
derived from fermi-dirac statistics. Let’s start with the density of states
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The degeneracy g = 4 is given, and
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Therefore the density of states is
© 2]e — eg
€) = —5——
r mh*v?,

We can use this to write
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At low temperature 8 — oo and p = ep, which necessarily takes the positive energy band
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IThis arises from the lattice structure. 2D graphene atoms arrange themselves in a hexagonal honeycomb. The ‘smallest
site’ has two atoms (a line segment), whether the electron occupies atom A or atom B produces the same energy. This gives a
factor of 2 to degeneracy. You can read more about graphene here.


https://uwaterloo.ca/institute-for-quantum-computing/sites/ca.institute-for-quantum-computing/files/uploads/files/lecture-5.pdf

We approach this integral using the Sommerfield expansion 2
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The first term is an integral that blows up at € — —oco. We can ignore this for two reasons: (1) this term is
constant with respect to T, and therefore disappears from the specific heat (2) the singularity for large |e|
is unphysical. It appears only as a relic from the Dirac cone approximation, but energy and p(e) are clearly
bounded every where in the lattice (see figure).

So we can compute the derivative
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where we have taken pu = ¢y + vppr. Now
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therefore the low temperature heat capacity is
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Since the zero-point energy is arbitrary, we could set ¢y = 0 and have
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here vy is the Fermi velocity and pp > 0 is the Fermi momentum.

(b) When pr = 0 we cannot use the Sommerfield expansion, because <-(pe) is undefined at the cusp of

the cone. Instead we have the special case up = ep = €¢p. This means p is independent of T', and we can take
d/dT inside the integral. 3 As before
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Now
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2derived below
3Here we only need to take derivatives of 3. In part (a), there was have been an additional u(7T") dependence. That’s why
we had to use the Sommerfield expansion to do the integral first, before taking d/dT.



Recognize that e¥/(e¥ +1)? is even. * In the low temperature limit 3 — co we can stretch the integration
bound to [*_de. Now the second term
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because z|z| is odd. So we are left with just the first term
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Although y = (e — €g), the 5 dependence vanishes in this dimensionless integral. Therefore
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In summary cy o< T for pr > 0, but ¢y o< T? when pr = 0. These are the electronic contributions to specific
heat of graphene at low temperatures.

Define a family of integrals
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recalling ¢y = dU/dT = I + I5 one finds
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(¢) Phonons have 2D longitudinal and transverse waves
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where ¢ = |g] is the wavenumber magnitude. There is an also a low frequency mode with displacements
normal to the sheet
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Let us compute the density of states independently. For the linear modes E = hw = hvq. Therefore
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For the quadratic modes E = hw = hK¢?. Therefore
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the density of states is constant! ® Phonons are bosons. We can compute the Bose-Einstein statistics
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We need i < 0 for convergence. But at low temperatures we can put p arbitrarily close to 0.° Then
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At low temperatures § — oo and the quadratic modes dominate. Therefore the heat capacity dU/dT is to

leading order
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5this must be a low frequency approximation
6T have no proof for this



1 note

Given a Fermi-Dirac distribution, the Sommerfield expansion solves integrals
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where ¢ is any smooth function of € (in our problem ¢ = pe). Let us recall the Fermi-Dirac distribution
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looks like a step function, and its derivative F' = dfpp/de behaves like a d-function centered at € = p with
width 1/8 = kT. To leverage this we take an integration by parts

where
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is defined such that dip/de = ¢(¢). Evidently 1(0) = 0 and F(+o0) = 0. This allows us to drop the constant
and stretch the integration bound, which will be useful later on.

Now letting = € — 1 we compute
8P _ -8

P IE T e D

and Taylor expand about p
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Since F is even, all odd terms in 1 drop from fioo e. Now
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Here we access known dimensionless integrals
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where Iy = 1, I = 72 /3, and I,,, = 0 if m is odd. Therefore
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This is the Sommerfield expansion. *

"Big thanks to Yichen Fu and Fang Xie for their insights on this problem.
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