(a) At large distances, the dominant contribution is magnetic dipole radiation. The magnetic moment of the loop varies as

\[m = (2a)^2 I_0 \cos(\omega t) \hat{z}, \]

and so the vector potential has leading contribution

\[A(t) = -\frac{\mu_0}{4\pi rc} \hat{r} \times \hat{m}(t - r/c) = -\frac{\mu_0 a^2 I_0 \omega}{\pi rc} \sin(\omega(t - r/c)) (\hat{r} \times \hat{z}) = -\frac{\mu_0 a^2 I_0 \omega}{\pi rc} \sin(\omega(t - r/c)) \sin \theta \hat{\phi}. \]

Thus the electric field is

\[E = -\partial_t A = -\frac{\mu_0 a^2 I_0 \omega^2}{\pi rc} \cos(\omega(t - r/c)) \sin \theta \hat{\phi}. \]

(b) The Poynting vector is

\[S = \frac{E \times B}{\mu_0} = \frac{E^2}{\mu_0 c} \hat{r} = \frac{\mu_0 a^4 I_0^2 \omega^4}{\pi^2 r^2 c^3} \cos^2(\omega(t - r/c)) \sin^2(\theta) \hat{r}. \]

Taking the time-average and integrating over all directions, we obtain the total radiated power

\[P = 4\frac{\mu_0 a^4 I_0^2 \omega^4}{3\pi c^3} \]

where we have used the integral

\[\int_{S^2} \sin^2 \theta \, d\Omega = \int_{S^2} (x^2 + y^2) \, d\Omega = \frac{2}{3} \int_{S^2} (x^2 + y^2 + z^2) \, d\Omega = \frac{8\pi}{3}. \]

(c) The conducting plane cancels the transverse component of \(E \), which is equivalent to an image loop located at \(z = -2b \) with the opposite current.

Thus the dominant contribution is now magnetic quadrupole radiation. The magnetic quadrupole moment \(Q \) varies as \(\cos(\omega t) \), and the vector potential is proportional to \(\partial_t^2 Q \propto \omega^2 \). It follows that \(E = -\partial_t A \propto \omega^3 \), and thus the Poynting vector is proportional to \(E^2 \propto \omega^6 \).

Hence the total radiated power has an \(\omega^6 \) dependence.