M09T.2

We’re given the Hamiltonian

\[H = \frac{p_1^2}{2m} + U(x_1) - f x_N + \sum_{i=2}^{N} \frac{p_i^2}{2m} + U(x_n - x_{n_1}) \]

(1)

We need not worry about the momentum, in this problem. We calculate the partition function \(Z \),

\[Z \propto \int e^{-\beta H} = \int d^N x \exp \left[-\beta U(x_1) + \beta f x_N - \beta \sum_{i=2}^{N} U(x_n - x_{n_1}) \right] \]

(2)

We can begin by first performing the integration of \(x_n \), denoted by \(Z_n \), which gives

\[Z_n \propto \int_{x_{n-1}}^{x_{n-1}+a} dx_n e^{\beta u_0} e^{\beta f x} + \int_{x_{n-1}+a}^{x_{n-1}+Q} dx_n e^{\beta f x} \]

\[= \frac{1}{\beta f} \left[e^{\beta u_0} \left(e^{\beta f(x_{n-1}+a)} - e^{\beta f(x_{n-1})} \right) + \left(e^{\beta f(x_{n-1}+Q)} - e^{\beta f(x_{n-1}+a)} \right) \right] \]

\[= \frac{e^{\beta f x_{n-1}}}{\beta f} \left(e^{\beta f a + u_0} + e^{\beta f Q} - e^{\beta u_0} - e^{\beta f a} \right). \]

where we'll later take the limit \(Q \to \infty \).

From here, it is clear that after performing the integration over all coordinates (when \(x_0 = 0 \)), we arrive at

\[Z \propto \left[\frac{1}{\beta f} \left(e^{\beta (f a + u_0)} + e^{\beta f Q} - e^{\beta u_0} - e^{\beta f a} \right) \right]^N = Z_0^N. \]

Interestingly, the partition function is the same as the single particle partition function raised to the power of \(N \). Most of the work is now done. The average length of the system is given by
\[\langle x_N \rangle = \frac{\int d^N x \, x_N e^{-\beta H}}{Z} \]

\[= \frac{\int d^N x \, x_N \exp \left[-\beta U(x_1) + \beta f x_N - \beta \sum_{i=2}^N U(x_n - x_{n_1}) \right]}{Z} \]

However, note that

\[\int d^N x_N e^{-\beta H} = \frac{1}{\beta} \int \frac{\partial}{\partial f} e^{-\beta H} = \frac{1}{\beta} \frac{\partial}{\partial f} \int e^{-\beta H} = \frac{1}{\beta} \frac{\partial Z}{\partial f} \]

So

\[\langle x_N \rangle = \frac{N}{\beta} \left[\frac{1}{\beta f} \left(e^{\beta(fa+u_0)} + e^{\beta fQ} - e^{\beta u_0} - e^{\beta fa} \right) \right]^{N-1} \frac{\partial Z_0}{\partial f} \]

\[= -\frac{N}{\beta f} + Na \frac{e^{\beta(fa+u_0)} - e^{\beta fa}}{e^{\beta(fa+u_0)} + e^{\beta fQ} - e^{\beta u_0} - e^{\beta fa}} + \frac{NQe^{\beta fQ}}{e^{\beta(fa+u_0)} + e^{\beta fQ} - e^{\beta u_0} - e^{\beta fa}} \]

\[= Na - \frac{Nk_B T}{f} + \frac{Na}{e^{\beta fa} + e^{\beta f(Q-u_0)} - e^{\beta(fa-u_0)} - 1} \]

\[+ \frac{N(Q-a)e^{\beta fQ}}{e^{\beta(fa+u_0)} + e^{\beta fQ} - e^{\beta u_0} - e^{\beta fa}} \]

If \(f < 0 \), then taking the limit of \(Q \to \infty \) gives

\[\langle x_N \rangle = Na - \frac{Nk_B T}{f} + \frac{Na}{e^{\beta fa} - e^{\beta(fa-u_0)} - 1} \]

otherwise the length diverges. As \(T \to 0 \), \(\langle x_N \rangle \to Na \).

One thought on “M09T.2”
The idea is right.
In (5) when taking the $T \to 0$ limit you forgot that $f < 0$. Taking that into account you would get $\langle x_N \rangle \to 0$, which makes more sense than Na.
Also, you were supposed to consider the high-T limit too.
Also there are several typos in your formulas which would be better to correct.