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M03T.2 White Dwarf Star

Model a white dwarf star as a degenerate Fermi gas of electrons, supported against gravitational collapse by

the electron degeneracy pressure.

(a)

The fermi wavevector  can be found in terms of the total number of electrons, , as follows:

This defines the fermi energy

The total energy is given by the integral

Thus, the total kinetic energy  is
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The gravitational binding energy of a uniform density sphere is

The equilibrium radius of a white dwarf can be found by solving the equation

Using the fact that the mass of the white dwarf , we obtain the solution for 

(c)

In this part, we consider the electrons to be highly relativistic. Now the dispersion relation is given by 

.

The energy is now given by

(d)

In order to find the critical mass below which a white dwarf star is stable against collapse, we solve the

equation

Using , we obtain the critical mass
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One thought on “M03T.2 White Dwarf Star”

This solution is correct. Two typos: lost  in (4) and  in (11).

Also in (d) you don't really have to differentiate over  because both potential energies behave as . It's

enough to just look at the coefficient of this .
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