M01Q.1

1). The Hamiltonian is

$$H = -\mu \vec{B}\vec{\sigma} \tag{1}$$

$$= -\mu B_0 \begin{pmatrix} \cos \theta & \sin \theta e^{-i\phi} \\ \sin \theta e^{i\phi} & -\cos \theta \end{pmatrix} \tag{2}$$

The ground state is the spin state that directs parallel to the magnetic field. Solving the eigenstate of Hamiltonian, we get

$$|\theta,\phi\rangle_0 = \left(\frac{\cos\frac{\theta}{2}e^{-i\phi}}{\sin\frac{\theta}{2}}\right)$$
 (3)

2). In the adiabatic limit, at any time t, the wavefunction is still in the eigenstate of Hamiltonian H(t), but up to a phase. The state can be written as

$$| heta,\phi(t)
angle = e^{-iE_-t/\hbar} \, e^{iarphi(t)} \, | heta,\phi(t)
angle_0 \eqno(4)$$

where $E_-=-\mu B_0$ is the ground state energy. $| heta,\phi
angle_0$ is the instantaneous eigenstate of H(t).

Substitute $| heta,\phi(t)
angle$ into Schrodinger Equation

$$=E_{-}| heta,\phi
angle -\hbar\,rac{\partialarphi(t)}{\partial t}| heta,\phi
angle +i\hbar e^{-iE_{-}t/\hbar}\,e^{iarphi(t)}\,rac{\partial}{\partial t}| heta,\phi
angle_{0} \eqno(6)$$

, we get
$$rac{\partial arphi(t)}{\partial t}=\langle heta,\phi|_0 i rac{\partial}{\partial t} \, | heta,\phi
angle_0$$
 . So, $arphi(t)=\cos^2rac{ heta}{2} \, \omega t$.

3). After a whole circle, the Hamiltonian ends up exactly the same as the initial Hamiltonian. Let's label $|+\rangle$ and $|-\rangle$ as the excited and ground state of H(t=0), $|-\rangle=(\cos\theta/2,\sin\theta/2)^T$, $|+\rangle=(\sin\theta/2,-\cos\theta/2)^T$.

Split Hamiltonian to time independent part H_0 and time dependent part H^\prime .

 $H=-\mu \vec{B}\vec{\sigma}=H_0+H'$, where $H_0=-\mu B_0(\sigma_z\cos\theta+\sigma_x\sin\theta)$ and $H'=-\mu B_0(\sigma_x\sin\theta(\cos\phi-1)+\sigma_y\sin\theta\sin\phi)$. Regard the time-dependent part H' as perturbation and use interaction picture to solve this question.

Use interaction picture, we get the transition amplitude, which is $A=\langle+|Texp\{\tfrac{-i}{\hbar}\int_t e^{iH_0t/\hbar}\,H'\,e^{-iH_0t/\hbar}\,dt\}|-\rangle \text{, where }T\text{ is time ordering operator. Expand this formula to the lowest nonzero order of }H'\text{ , we get}$

$$A = \frac{-i}{\hbar} \int_{t} dt e^{i(E_{+} - E_{-})t/\hbar} \langle +|H'|-\rangle$$

$$= \frac{\mu B_{0}i}{\hbar} \int_{t} dt e^{i2\mu B_{0}t/\hbar} \left[-\cos^{2}\frac{\theta}{2}\sin\theta(e^{i\phi} - 1) + \sin^{2}\frac{\theta}{2}\sin\theta(e^{-i\phi} - 1)\right]$$
(8)

, where $\phi=\omega t$.

Finally, we get
$$A=rac{\omega\sin\theta}{2}\left(e^{i2\pi c/\omega}-1
ight)[rac{\cos^2rac{ heta}{2}}{c+\omega}+rac{\sin^2rac{ heta}{2}}{c-\omega}]$$
 , where $c=2\mu B_0/\hbar$. The transition probability is $P=|A|^2$.

2 thoughts on "M01Q.1"

Good. Now expand the solution.

The formula (1) is well-known and probably you don't have to explain it on the exam, but here it would make sense to give a short explanation/derivation.

In the second part of the problem, you probably substitute $|\theta,\phi(t)\rangle$ into the time-dependent Schroedinger equation, right? In the text you write stationary equation instead -- fix it.

Also, part 2 has to be expanded, I believe. You didn't write out explicitly the differential equation for $\varphi(t)$ which you solved to find the answer. The solution will benefit from adding some missing steps here. Part 3 looks OK to me, although I did't check the computations.

J December 17, 2013 at 11:53 am

Hi, Mykola, I have added more details in part 1 and part 2. Thank you.