We consider nested toroidal solenoids:

There are N_1 turns in the outer solenoid, and N_2 turns in the inner. The inner has resistance R, the outer has negligible resistance. We are asked to find (a) the power dissipation given AC voltage, and (b) the relevant inductances.

(a) To start we can draw a circuit diagram:

We can write down the voltage about each loop

\[V_1 = L_1 \dot{I}_1 + M \dot{I}_2 \]

\[M \dot{I}_1 = L_2 \dot{I}_2 + I_2 R \]

Since these ideal solenoids do not leak flux, the only power dissipated is from resistance

\[P = IV = I_2^2 R \]

Eliminating I_1 we can solve a first order differential equation for I_2

\[\frac{V}{L_1} = \left(\frac{L_1 L_2}{M} + M \right) \dot{I}_2 + \frac{L_1}{M} RI_2 \]

Now setting $V = V_0 e^{i\omega t}$ we see

\[\frac{M^2 + L_1 L_2}{L_1 R} \dot{I}_2 + I_2 = \frac{V_0}{R} \frac{M}{L_1} e^{i\omega t} \]

But the differential equation

\[\alpha \dot{x} + x = \beta e^{i\omega t} \]
can be solved with a transient solution

\[x(t) = x_0 e^{-\beta t/\alpha} \]

plus a particular solution \(Ae^{i\omega t} \) where \(^1\)

\[A(1 + i\omega \alpha) = \beta \]

One can solve the complex amplitude

\[A = \frac{\beta}{\sqrt{1 + (\alpha \omega)^2}} e^{-i \tan^{-1}(\alpha \omega)} \]

so the power dissipated is

\[P = I_2^2 R = A^2 R \langle \sin^2(\omega t) \rangle = \frac{\beta^2 R}{1 + (\alpha \omega)^2} \]

or adding back physical parameters

\[P = \frac{V_0^2 M^2 R/2}{(RL_1)^2 + \omega^2 (M^2 + L_1 L_2)^2} \]

\[= \frac{V_0^2 /2R}{(L_1/M)^2 + \omega^2 (M/R)^2 (1 + L_1 L_2 /M^2)^2} \]

Let us remark that

- \(P \to 0 \) as \(R \to \infty \) since the coupled current \(I_2 \to 0 \) for large \(R \).
- \(P \to 0 \) as \(\omega \to \infty \) since the reactance \(Z = i \omega L \) overshadows \(R \) at high frequency.

(b) Recall that inductance is defined

\[\Phi = LI \]

We can calculate

\[\Phi = N \int B \cdot dA = \frac{\mu_0 N^2 I}{2\pi} l \int \frac{dr}{r} \]

where we used Ampere’s Law

\[\int B \cdot dl = \mu_0 I_{enc} \]

to find

\[B(r) = \frac{\mu_0 N I}{2\pi r} \]

and defined \(l, w \) from the flux cross-section.

It follows that

\[L_1 = \frac{\mu_0 N_1^2}{2\pi} 3s \ln \left(1 + \frac{3s}{a} \right) \]

similarly

\[L_2 = \frac{\mu_0 N_2^2}{2\pi} s \ln \left(1 + \frac{s}{a + s} \right) \]

and

\[M = \frac{\mu_0 N_1 N_2}{2\pi} s \ln \left(1 + \frac{s}{a + s} \right) \]

In the limit \(s \ll a \), we see \(L_1 L_2 \approx M^2 \).

\(^1\) just plug in \(Ae^{i\omega t} \)