May 2015 Problem E2

J. Alexander Jacoby ${ }^{1}$
${ }^{1}$ Department of Physics, Princeton University, Princeton New Jersey 08544, USA

(Dated: December 16, 2022)

Abstract

Since there is no legible solution online already that uses separation of variables, I thought I might post one. It is a relatively efficient, clean way to do things.

- Part A

Let $\phi=X(x) Y(y) Z(z)$. We know immediately that we want $\phi(|z| \rightarrow \infty)=0$. We also know that we want no y dependence. Thus we are limited to the form

$$
\begin{equation*}
\phi(x, z)=\operatorname{Re}\left[e^{i k x-k|z|+\gamma}\right] \quad \gamma \in \mathbb{C} \tag{1}
\end{equation*}
$$

while our intuition suggests that we set $\operatorname{Im}[\gamma]=0$, since this would put the potential out of phase with the charge density, which seems unwanted. This is really up to a factor of π, however, but we will absorb this as $e^{\gamma}=\Gamma$, with $\Gamma \in \mathbb{R}$. Now we recall that given a surface and two approaches n_{\perp}^{+}and n_{\perp}^{-}, we know that $\left.E_{\perp}\right|_{n^{+}} ^{n-}=\frac{\sigma}{\epsilon_{0}}$ (best to use intuition and not geometry for signs). In our case, we care about the $\hat{\mathbf{z}}$ component when $z=0$ for arbitrary y, and we will see the matching of functional forms on either side of the equation appear naturally. Namely, we see that.

$$
\left.E_{z}\right|_{z=0^{+}} ^{z=0^{-}}=2 k \Gamma \cos (k x)=\frac{\sigma_{f}(x)}{\epsilon}=\frac{\sigma_{0}}{\epsilon_{0}} \cos (k x)
$$

so we get $\Gamma=\frac{\sigma_{0}}{2 \epsilon_{0} k}$. As a sanity check, we see that the \hat{z} component of the field at finite z with $x=0$ is in the $\hat{\mathbf{z}}$ direction. Plugging in for the field we now get

$$
\begin{equation*}
\mathbf{E}=-\nabla \frac{\sigma_{0} e^{-k|z|} \cos (k x)}{2 \epsilon_{0}}=\hat{\mathbf{x}} \frac{\sigma_{0} e^{-k|z|} \sin (k x)}{2 \epsilon_{0}}+\hat{\mathbf{z}} \frac{\sigma_{0} e^{-k|z|} \cos (k x)}{2 \epsilon_{0}} \operatorname{sgn}(z) \tag{2}
\end{equation*}
$$

which seems altogether reasonable.

- Part B

Now the force is rather simple. Generally $\mathbf{F}_{\text {dip. }}=(\mathbf{p} \cdot \nabla) \mathbf{E}$ (the directional derivative of the field in the direction of the dipole times the magnitude of the dipole). Now we know that $\mathbf{p} \propto \mathbf{E}$ and that $|\mathbf{p}|=\frac{\alpha \sigma_{0} e^{-k|z|}}{2 \epsilon_{0}}$ and the directional derivative along both \mathbf{p} and \mathbf{E} is $\sin (k x) \partial_{x}+\cos (k x) \partial_{z}$ so we find that

$$
\begin{equation*}
\mathbf{F}=\left(\frac{\alpha \sigma_{0} e^{-k|z|}}{2 \epsilon_{0}}\right)\left(\sin (k x) \partial_{x}+\cos (k x) \partial_{z}\right)\left(\hat{\mathbf{x}} \frac{\sigma_{0} e^{-k|z|} \sin (k x)}{2 \epsilon_{0}}+\hat{\mathbf{z}} \frac{\sigma_{0} e^{-k|z|} \cos (k x)}{2 \epsilon_{0}}\right)=-\hat{z} \frac{k \alpha \sigma_{0} e^{-2 k|z|}}{4 \epsilon_{0}} \tag{3}
\end{equation*}
$$

which is roughly what one can expect from intuition. I have assumed $z>0$ here, but it is a simple matter to see that it should not matter and the same result holds for $z<0$.

- Summary

Problem includes separation of variables, field (discontinuity), and a simple dipole problem.

