
Part I—Mechanics J99M.1—Rolling Disk

J99M.1—Rolling Disk

Problem

A thin uniform disk of radius a and weight Mg rolls without slipping with constant speed in a circle
of radius b on a horizontal plane. The plane of the disk is inclined at an angle θ from the vertical.
Find the period τ for motion around the circle as a function of θ.



Part I—Mechanics J99M.2—Particle Rolling on a Hyperboloid

J99M.2—Particle Rolling on a Hyperboloid

Problem

A particle of mass m moves on the surface x2 + y2 − z2 = R2, subject to a uniform force due to
gravity g directed along the negative z axis. Deduce the frequency of small oscillations about orbits
that lie in a plane normal to the z axis. For what values of z are such orbits unstable?



Part I—Mechanics J99M.3—Rod Orbiting the Sun

J99M.3—Rod Orbiting the Sun

Problem

A rod of length L, mass m and uniform mass density is circling in an orbit around the Sun at
distance R (between the center of the rod and the Sun). The mass of the Sun is M . Assume that
the rod is always pointed in the radial direction. Calculate the tension at the center of the rod.



Part II—E & M J99E.1—Charged Particle Trap

J99E.1—Charged Particle Trap

Problem

It is well known that a charged particle cannot be held at rest by purely electrostatic fields. In your
answers below, you will give a (simple) classical explanation of how a neutral atom of polarizability
α can be “trapped” at the focus of a laser beam.

a) First, ignore magnetic interactions, and deduce that there is a (time-averaged) trapping force
dependent on the electric field of the laser.

b) Atoms have some probability of absorbing photons from the laser beams, thereby being kicked
along the direction of the beam. This processes can be modelled classically by supposing that
the polarizability of the atom has an imaginary part: α = α′ + iα′′. Deduce the force on an
atom along the direction of propagation of a linearly polarized plane electromagnetic wave in
terms of α′′, the imaginary (absorptive) part of the polarizability.

c) For an idealized atom with a single natural frequency ω0, deduce the ratio α′/α′′ at the fre-
quency ω for which the real part, α′, of the polarizibility is a maximum. For this, you may use
a classical model of an atom as an electron on a spring of frequency ω0, subject to a damping
force −γmẋ, where γ � ω0 is the reciprocal of the lifetime of the ‘excited state’.

In practice, the trapping force a) must be larger than the longitudinal force b). This requires the
laser beam to be tightly focused.



Part II—E & M J99E.2—Transverse Momentum from an Electromagnetic Wave

J99E.2—Transverse Momentum from an Electromagnetic Wave

Problem

When a charged particle (of mass m and charge e) interacts with a linearly polarized plane wave
(with electric field Ex = E0 cos(kz−ωt)), the particle’s motion includes a transverse oscillation. In
the frame in which the particle is at rest on average, the motion is purely transverse if eE0/mωc� 1,
as may be assumed. Hence, the particle has transverse momentum, while the wave carries only
longitudinal momentum. How is Newton’s 3rd law satisfied in this situation?

Hint: Demonstrate that an appropriate piece of the total field momentum is equal and opposite to
the mechanical momentum of the particle. Give an argument based on electric and magnetic fields,
rather than, say, one based on the canonical momentum p + eA/c.



Part II—E & M J99E.3—Magnetic Field at a Pulsar

J99E.3—Magnetic Field at a Pulsar

Problem

The x-ray pulsar SGR1806-20 has recently been observed to have a period T of 7.5 s and a relatively
large “spindown” rate Ṫ = 8× 10−11; C. Kouveliotou et al., Nature 393, 235 (1998). Calculate the
maximum magnetic field at the surface of this pulsar, assuming it to be a standard neutron star of
mass 1.4M� = 2.8× 1030 kg and radius 10 km, that the mass density is uniform, that the spindown
is due to electromagnetic radiation, and that the angular velocity vector is perpendicular to the
magnetic dipole moment of the pulsar.

Give a numerical answer for the surface magnetic field in units of the so-called QED critical field
strength m2c3/e~ = 4.4× 1013 gauss.

http://www.nature.com/nature/journal/v393/n6682/abs/393235a0.html


Part III—Quantum J99Q.1—Hydrogen Molecule

J99Q.1—Hydrogen Molecule

Problem

Consider two hydrogen atoms with their nucleii separated by a fixed distance R > 2rb where rb is
the Bohr radius

a) In terms of the electronic wavefunctions on the separate atoms write an approximate two
electron wavefunction for the ground state, including spin and orbital degrees of freedom.

b) There are terms in the hamiltonian of the molecule which are absent in two separate atoms.
Write an expression for these perturbations. Using perturbation theory find an expression for
the lowest order nonvanishing energy difference between the singlet and triplet states. (The
result may be left in terms of an integral.)

c) For large separation between the hydrogen molecules, the perturbation can be treated in a
dipole approximation. Find an expression for the effective interaction energy and in particular
find its dependence on the separation R in the limit R� 2rb.



Part III—Quantum J99Q.2—Spins on a Square

J99Q.2—Spins on a Square

Problem

Four spins interacting antiferromagnetically (only with nearest neighbors) are located at the vertices
of a square. The Hamiltonian can be written as:

H =
∑
i,j

~Si · ~Sj

a) What are a set of good quantum numbers that can be used to fully classify the eigenstates?

b) For spin 1/2: Give the eigenenergies and the degeneracy of each level.

c) For general S what is the energy and degeneracy of the ground state?



Part III—Quantum J99Q.3—Electron Transition out of a Square Well

J99Q.3—Electron Transition out of a Square Well

Problem

An electron is in the ground state of a finite but very deep one-dimensional square well,

V (x) =

{
−V0 for 0 < x < a

0 otherwise,

where V0 and a are positive constants. A weak electric field ~ε = ε0x̂sin(ωt) is switched on at t=0,
and the electron is excited out of the well.

a) What is the momentum p of the electron after the transition?

b) What is the transition rate?



Part IV—Stat Mech & Thermo J99T.1—Weirdons

J99T.1—Weirdons

Problem

Suppose a new kind of particle is discovered. This particle is known as the weirdon since it obeys
weird statistics in which a given state may contain 0, 1, or 2 particles. Furthermore, weirdons are
one dimensional and we will be considering a gas of non-interacting weirdons confined to a straight
line of length L. The weirdons are weakly coupled to a thermal reservoir at temperature τ and the
weirdon mass is m.

a) Suppose the chemical potential of the weirdons is µ. What is the occupancy of a state with
energy ε? In addition, give numerical values of the occupancy for (µ−ε)/τ = −∞, (µ−ε)/τ = 0,
and (µ− ε)/τ = +∞

b) What is the density of states? (That is, the number of states per unit energy as a function of
energy?) Remember, the weirdons are one dimensional and are confined to a “box” of length
L.

c) Suppose the weirdon gas is cold (τ → 0) and contains N weirdons. What is the chemical
potential?

d) Under the same conditions as part c), what is the total energy of the weirdon gas? Be sure to
eliminate µ from your expression.

e) The low temperature heat capacity of the weirdon gas is proportional to the temperature to
some power, C ∝ τα . What is α?



Part IV—Stat Mech & Thermo J99T.2—Maxwell Construction

J99T.2—Maxwell Construction

Problem

Consider a system whose equilibrium states are described by the temperature, T and density ρ.

a) What is the relation between the free energy per unit volume, f(T, ρ), and the pressure,
P (T, ρ)?

b) For thermodynamic stability, the pressure has the property that P (T, ρ) is a monotonically
increasing function of ρ for fixed T . What property of f(T, ρ) is equivalent to this?

From a model equation of state, and assuming the system is homogeneous, we find the P (1/ρ) curve
at constant temperature T < Tc, shown in the Figure.

1/ρ

P

c) Sketch f(ρ) at temperature T < Tc. Assuming the system in equilibrium will phase separate
if this reduces the free energy, construct the physical free energy curve, f̄(ρ).

d) How does your construction of the new free energy translate to a new isotherm in the (P, 1/ρ)
plane? Make sure you show analytically that the construction for f and the construction for
P are equivalent.



Part IV—Stat Mech & Thermo J99T.3—Ice Making Machine

J99T.3—Ice Making Machine

Problem

In a large thermally insulated room 100g of water is initially at room temperature, Tr = 27◦C and
at atmospheric pressure. An ice making machine, initially at 27◦C, is also in the room. What is
the minimum amount of work by the machine needed to transform all the water into ice at 0◦C and
atmospheric pressure?

Useful constants:

Specific heat of water c = 4.2 kJ/kgK

Heat of fusion λ = 330 kJ/kg
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