
Problem J18E.1

For a right-circularly polarized incident beam, the incident E-field satisfies
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and so the reflected E-field satisfies
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A similar identity holds for left-circularly polarized beam. The polarization of the incident
linearly polarized beam can be written as
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so the reflected beam has the polarization
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Thus the reflected beam is elliptically polarized. The intensity of the incident beam is propor-
tional to 
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and the intensity of the reflected beam is proportional to
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As expected, when n+ = n− = n, this expression reduces to (1− n)2/(1 + n)2.
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