Problem J18E. 1

For a right-circularly polarized incident beam, the incident E-field satisfies

$$
\mathbf{E}_{i,+}(z, t)=E_{0}\left[\begin{array}{c}
\cos (\omega t-k z) \\
\sin (\omega t-k z) \\
0
\end{array}\right],
$$

and so the reflected E-field satisfies

$$
\mathbf{E}_{r,+}(z, t)=E_{0} \frac{1-n_{+}}{1+n_{+}}\left[\begin{array}{c}
\cos (\omega t+k z) \\
\sin (\omega t+k z) \\
0
\end{array}\right] .
$$

A similar identity holds for left-circularly polarized beam. The polarization of the incident linearly polarized beam can be written as

$$
\mathbf{E}_{i}(z, t)=E_{0}\left[\begin{array}{c}
\cos (\omega t-k z) \\
0 \\
0
\end{array}\right]=\frac{E_{0}}{2}\left[\begin{array}{c}
\cos (\omega t-k z) \\
\sin (\omega t-k z) \\
0
\end{array}\right]+\frac{E_{0}}{2}\left[\begin{array}{c}
\cos (\omega t-k z) \\
-\sin (\omega t-k z) \\
0
\end{array}\right],
$$

so the reflected beam has the polarization

$$
\left.\begin{array}{rl}
\mathbf{E}_{r}(z, t) & =\frac{E_{0}}{2}\left[\begin{array}{c}
\left(\frac{1-n_{+}}{1+n_{+}}+\frac{1-n_{-}}{1+n_{-}}\right) \\
\left(\frac{1-n_{+}}{1+n_{+}}-\frac{1-n_{-}}{1+n_{-}}\right) \\
0
\end{array}\right) \sin (\omega t-k z) \\
0
\end{array}\right] .
$$

Thus the reflected beam is elliptically polarized. The intensity of the incident beam is proportional to

$$
\left\langle\mathbf{E}_{i}^{2}\right\rangle=\frac{1}{2} E_{0}^{2},
$$

and the intensity of the reflected beam is proportional to

$$
\left\langle\mathbf{E}_{r}^{2}\right\rangle=\frac{1}{2} E_{0}^{2} \frac{\left(1-n_{+} n_{-}\right)^{2}+\left(n_{-}-n_{+}\right)^{2}}{\left(1+n_{+}\right)^{2}\left(1+n_{-}\right)^{2}}
$$

so that

$$
\frac{I_{r}}{I_{i}}=\frac{\left(1-n_{+} n_{-}\right)^{2}+\left(n_{-}-n_{+}\right)^{2}}{\left(1+n_{+}\right)^{2}\left(1+n_{-}\right)^{2}} .
$$

As expected, when $n_{+}=n_{-}=n$, this expression reduces to $(1-n)^{2} /(1+n)^{2}$.

