Section A. Quantum Mechanics

1. Perturbed Harmonic Oscillator (MR solution)

A particle of mass \(m \) moves one-dimensionally in a static harmonic oscillator potential

\[
V = \frac{1}{2} m \omega^2 x^2
\]

It is also acted on by a space-time dependent perturbation potential \(W(x, t) \) that is narrowly localized around a point \(x_0(t) \) in space that moves with time. To simulate this, take the delta function expression

\[
W = \lambda \delta(x - x_0(t))
\]

where \(\lambda \) parametrizes the potential strength.

Let \(x_0(t) = vt \) for some velocity \(v \) and suppose that the particle was in the oscillator ground state \(u_0(x) \) in the remote past (at time \(t \to -\infty \)). What is the probability that the particle will be found in the first excited oscillator state \(u_1(x) \) in the remote future? Treat \(W \) as a small perturbation and work out the answer to lowest order in \(\lambda \). Sketch the dependence of the transition probability on \(v \) and identify the value of \(v \) that maximizes the transition probability.

You are reminded that

\[
\begin{align*}
 u_0 &= \left(\frac{1}{\pi a^2} \right)^{1/4} \exp\left(-\frac{x^2}{2a^2}\right), &
 u_1 &= \sqrt{2} \frac{x}{a} u_0, &
 a &= \sqrt{\frac{\hbar}{m \omega}}.
\end{align*}
\]
J/16 Q. 1

Trust as two-level system \(\Rightarrow \) time-dependent perturbation theory

\[C_2 = -\frac{i}{\hbar} \int_{-\infty}^{\infty} \langle \gamma_2 | W(t) | \gamma_0 \rangle e^{\frac{-i E_0 t}{\Delta}} dt \leq P_2 = |c_0|^2 \]

\[E_1 - E_0 = \hbar \omega \]

\[\langle \gamma_2 | W(t) | \gamma_0 \rangle = \int_{-\infty}^{\infty} \sqrt{\frac{\alpha}{\pi}} U_0^\dagger(x) \phi S(x-Vt) dx \]

\[= \sqrt{\frac{\pi}{\lambda}} \frac{Vt}{\alpha} U_0^\dagger(Vt) = U_0^\dagger(x) = \frac{\lambda}{\sqrt{\pi}} \exp \left(-\frac{x^2}{\alpha^2} \right) \]

\[= \sqrt{\frac{\pi}{\lambda}} \frac{2Vt}{\alpha^2} \exp \left(-\frac{V^2 t^2}{\alpha^2} \right) \]

\[= -\frac{i}{\hbar} \sqrt{\frac{\lambda}{\pi}} \frac{2V}{\alpha^2} \int_{-\infty}^{\infty} U \exp \left[-\left(\frac{V^2 t^2}{\alpha^2} \right) \right] dt' \leq U = \frac{Vt}{\alpha}, t' = \frac{u}{V}, \alpha = \frac{\alpha}{V} \]

\[= -\frac{i}{\hbar} \sqrt{\frac{\lambda}{\pi}} \frac{2V}{\alpha^2} \int_{-\infty}^{\infty} U \exp \left[-\left(\frac{u^2}{\alpha^2} \right) \right] du \]

\[= -\frac{i}{\hbar} \sqrt{\frac{\lambda}{\pi}} \frac{V}{\alpha} \int_{-\infty}^{\infty} U \exp \left[-\left(\frac{i\omega u}{\alpha} \right)^2 \right] \exp \left[-\frac{\omega^2 a^2}{V^2} \right] du \leq a = \frac{1}{\sqrt{n}} \]

\[= -\frac{i}{\hbar} \sqrt{\frac{\lambda}{\pi}} \frac{V}{\alpha} \exp \left(-\frac{\omega^2 a^2}{V^2} \right) \int_{-\infty}^{\infty} \exp \left[-\frac{\omega^2 a^2}{V^2} \right] \exp \left[-\frac{i\omega u}{\alpha} \right] \exp \left[-\frac{\omega^2 a^2}{V^2} \right] du \]

\[= -\frac{i}{\hbar} \sqrt{\frac{\lambda}{\pi}} \frac{V}{\alpha} \exp \left(-\frac{\omega^2 a^2}{V^2} \right) \int_{-\infty}^{\infty} \exp \left[-\frac{i\omega u}{\alpha} \right] \exp \left[-\frac{\omega^2 a^2}{V^2} \right] \exp \left[-\frac{i\omega u}{\alpha} \right] \exp \left[-\frac{\omega^2 a^2}{V^2} \right] du \]

\[= -\frac{i}{\hbar} \sqrt{\frac{\lambda}{\pi}} \frac{V}{\alpha} \exp \left(-\frac{\omega^2 a^2}{V^2} \right) \leq a = \frac{1}{\sqrt{n}} \]

\[= \frac{\lambda}{\sqrt{\pi} \hbar \omega} \exp \left(-\frac{\omega^2 a^2}{V^2} \right) \]

\[P_2 = |c_0|^2 = \frac{1}{V^4} \frac{m \hbar^2}{\lambda \omega} \exp \left(-\frac{1}{V^2} \frac{\omega \lambda}{2\pi} \right) \leq V_0^4 = \frac{\omega^2}{2\pi}, V_0^2 = \frac{\hbar \omega}{2\pi} \]

\[= \left(\frac{\lambda}{V^4} \right) \exp \left(-\frac{\lambda^2}{V^2} \right) \]

\[P_2 = \left(\frac{V_0}{V} \right)^4 \exp \left[-\left(\frac{V_0^2}{V} \right)^2 \right], V_0^4 = \frac{\omega^2}{2\pi}, V_0^2 = \frac{\hbar \omega}{2\pi} \]
Max of Probability at \(\frac{dP_z}{dV} = 0 \)

\[
\frac{dP_z}{dV} = -4 \frac{V_0^4}{V^3} \exp\left(-\left(\frac{V_0}{V}\right)^2\right) + \left(\frac{V_0}{V}\right)^4 \exp\left(-\left(\frac{V_0}{V}\right)^2\right)(-1)(-2)\frac{V^2}{V^3} = 0
\]

\[
\frac{4}{V^3} = 2 \frac{V_0^2}{V^2} \rightarrow V^2 = \frac{1}{2} V_0^2 = \frac{2u}{m}
\]

\[
V_{max} = \sqrt{\frac{2u}{m}}
\]