1. A particle of mass \(m \), with the Hamiltonian \(H = \frac{p^2}{2m} + V(x) \), is moving in one dimension subject to an attractive potential of the form:

\[
V(x) = -U \left[\delta(x + a/2) + \delta(x - a/2) \right]
\]

with \(U > 0 \).

(a) What consequences does the Hamiltonian’s reflection symmetry have for the particle’s bound states?

(b) For \(U \) large enough the Hamiltonian has two bound states. Sketch their wave functions, making it clear which describes the ground state.

(c) For \(U \leq U_c \) the Hamiltonian has only one bound state. Determine the value of \(U_c \), in terms of the other parameters.
a) It implies that the bond states are either symmetric or antisymmetric.

b) The wave function is given by:

\[\psi(x) = \begin{cases}
A e^{kx} & x < -l \\
B e^{kx} + C e^{-kx} & -l < x < l \\
D e^{-kx} & x > l
\end{cases} \]

where \(k =\sqrt{-2mE}/\hbar \) and \(E < 0 \) for bound states.

Continuity at \(x = \pm l \):

\[A e^{-kx} = B e^{-kx} + C e^{kx} \rightarrow A = B + C e^{2kx} \]

\[B e^{kx} = B e^{kx} + C e^{-kx} \rightarrow D = B e^{2kx} + C \]

\[\psi(x) = \begin{cases}
B e^{kx} + C e^{kx} & x < -l \\
B e^{kx} + C e^{-kx} & -l < x < l \\
B e^{-kx} + C e^{-kx} & x > l
\end{cases} \]

Once obtaining the W.F., an energy relation can be found from boundary conditions at the delta functions.
\[-\frac{\mu_k}{2\mu^3} \gamma''(x) - 2\mu_u \gamma(x) - \pi \delta(x-L) \gamma(x) = E \gamma(x)\]

\[-\frac{\mu_k}{2\mu^3} \int_{-L}^{L} \gamma''(x) - 2\mu_u \gamma(x) - \pi \delta(x-L) \gamma(x) \, dx = \int_{-L}^{L} E \gamma(x) \, dx\]

\[-\frac{k}{2\mu} [\gamma'(-L) - \gamma'(L)] - u_0 \gamma(L) = 0\]

\[\gamma'(L) = -\frac{k}{2\mu} [\gamma'(-L) - \gamma'(L)]\]

\[\gamma'(L) - \gamma'(-L) = k [(-B_0 e^{kx} - c^{-ke}) - (B_0 e^{-ke} - c^{ke})] = -2kB_0 e^{kx}\]

\[\gamma'(-L) - \gamma'(-L) = k [(B_0 e^{-ke} - c^{ke}) - (B_0 e^{ke} + c^{ke})] = -2kC e^{kx}\]

at \(x = -L\):

\[B e^{-ke} + C e^{ke} = -\frac{k}{2\mu} (-2kC e^{kx}) = \frac{k}{\mu} C e^{kx}\]

\[B = C (\frac{k}{\mu} - 1) e^{kx}\]

at \(x = L\):

\[B e^{ke} + C e^{-ke} = -\frac{k}{2\mu} (-2kB_0 e^{kx}) = \frac{k}{\mu} B e^{kx}\]

\[C = B (\frac{k}{\mu} - 1) e^{kx} = C (\frac{k}{\mu} - 1)^x e^{kx}\]

\[(\frac{k}{\mu} - 1)^x = e^{-4ke} \Rightarrow \frac{k}{\mu} - 1 = e^{-2ke}\]

\[\frac{n+1}{\mu u} \kappa = 1 \pm e^{-2ke}\]
Need to find when \(\frac{\hbar^2}{mn^2} K = 1 - e^{-x^2} \) for \(k < 0 \)

take for high-energy state where \(E \approx 0 \rightarrow k \ll 1 \)

\[
\frac{\hbar^2}{mn^2} K = 1 - e^{-x^2} = 1 - (1 - 2Kl) = 2Kl = Ka \Rightarrow \]

\[
U_c = \frac{\hbar^2}{mn^2} \]

\[
U_c = \frac{\hbar^2}{mn^2} \]