Department of Physics, Princeton University

Graduate Preliminary Examination
Part I

Thursday, January 10, 2013
'9:00 am - 12:00 noon

Answer TWO out of the THREE questions in Section A (Mechanics) and TWO out of the
THREE questions in Section B (Electricity and Magnetism).

Work each problem in a separate examination booklet. Be sure to label each booklet with
your name, the section name, and the problem number. No calculators are permitted.
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Section A. Mechanics

1. Coriolis Effect. A particle of mass m is launched from the Earth’s surface at colati-
tude 8 with initial velocity v straight up. A drag force F = —b¥ acts on the particle
while in flight, where b = mg/vy. You may take the acceleration of gravity to be
constant throughout the motion.

Use a coordinate system with % pointing East, 5 pointing North, and k straight up, so
that the initial conditions are z(0) = y(0) = 2(0) = 0, £(0) = y(0) = 0, and 2(0) = .

a) Ignoring the Coriolis force, what is the vertical velocity 2(t)?

b) Now taking into account the Coriolis force and working at leading order in the
Barth’s angular velocity o, what are the horizontal components of the velocity,
£(t) and y(t)?

c) Relative to its launch position, where does the particle land? You may assume
that vy is such that the particle reaches terminal velocity on the way down.

(©2013 Department of Physics, Princeton University, Princeton, NJ 08544, USA



Graduate Preliminary Examination, Thursday, January 10, 2013 - Part I 3

2. Higgs Orbits. A particle of mass m moves under the influence of a potential
V(r) = —ar® +brt, (1)

where a and b are positive constants and r is the distance between the particle and
the force center. In the context of quantum field theory with r being a complex scalar
field, this is the so-called “Higgs Potential.” Here we interpret the potential as arising
from a central force and investigate the possible motion of a particle in this field.

a) What is the radius p of the circular orbit allowed in this potential? s,

b) What is the condition on @ and b such that this orbit is stable? v

c) What is the frequency of small oscillations around r = p? 1),

In the Higgs analogy, the answer to part a corresponds to the vacuum expectation
value of the field, while the answer to part c¢ corresponds to the mass of the Higgs
boson. The stability of the vacuum (part b) was used as early as 1976 to set a lower
bound on the mass of the Higgs boson.
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3. Precession of Equinoxes. The Sun and Moon exert torques on the Earth that cause
its rotation axis to precess around the normal to the plane of the ecliptic once every
26000 years. The component of the gravitional potential from the Sun that gives rise
to a torque on the Earth is:

1% (2)

2
— —cos° 0
273

_GM(I;—I) B 3 ]

where M is the mass of the Sun, r is the radius of the Earth’s orbit, I; and I3 are
moments of inertia around Earth’s principle axes, and 6 is the tilt of the Earth’s
rotation axis relative to the normal to the plane of the ecliptic. For orientation, the
angular frequency of rotation of the Earth is w3, and the potential has been averaged
over one orbital period since the precession period is much longer than a year.

a) Write down the Lagrangian describing the Earth’s rotational and orbital motion

in the graviational field of the Sun assuming no nutation of the rotation axis

b) Assuming the precession frequency ¢ is much less than the rotational frequency
ws of the Earth (¢ << ws), derive a formula for the ratio d)/wo, where wy is the
angular frequency of Earth’s orbital motion. For full credit your answer should
be in terms of wy, ws, I1, I3, and 4 only. ]

¢) Looking down on the northern hemisphere from above the plane of the ecliptic,
in which direction does the Earth’s rotation axis precess? P

d) Using (I3 — 1) /I3 = 0.003, § = 23.5°, and the known frequencies of Earth’s
rotation and orbit, give a rough estimate for the precession period in years. [Note
that you should obtain a value larger than 26000 years since the torque from the
Moon is larger than, and adds to, that from the Sun.] 5

23
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Section B. Electricity and Magnetisin
1. Field Transformations

(a) Let a current I circulate in a square of wire of side d lying in the x-y plane, with
center at the origin. What is the vector potential A at a position z,, where z, >> d
(ie, Taylor expand the denominator)? (b) What is the magnetic field B at z,?.

(¢) At x, lies a charge g, at rest. Calculate the force acting on the charge, and the
force actiing on the loop.

(d) Now boost to a frame where the charge ¢, and the loop are both moving with
speed +u,&. What is the electric field E' due to the loop acting on the charge (I need
magnitude and direction). For this, you don’t need the answer for part (b), just call
the field B but you need the direction.

(e) What is the total force I_?;ag acting on the charge g, in this frame?
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2. Radiating Fields

(a) A hydrogen atom has a diameter D of about 1 X108 cm. What is the frequency wy
of the rotation of the electron around the much more massive proton? Ignore relativity.

(b) Replace the rotating electron with a negative charge oscillating back and forth with
the angular frequency w,. Find the average power Iy, radiated over all space. You
will need to do the power integral to get full credit, starting from the radiated field at
position r and angle 6.

(¢) Make the incorrect assumption that the average radiated power is constant with
time and estimate the lifetime of a hydrogen atom in seconds.
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Figure 1: An AC circuit.

Complex Impedances

(a) Consider the circuit above. The switch can be set in any of three positions, A, B
or open (unconnected). The source supplies a voltage £(w) = goe™*.

When the switch is connected to A, find the frequency w that maximizes the current Ll
through the resistor R. (5 pts) o gl

\
2 Tev
(b) If we then flip the switch to the B position, what is the average power dissipation § -
in the circuit (ignoring transient effects). 5

C) We now open the switch to the middle position. Find the value of the resistor R
that will drop the amplitude of the current to 1/2 the value you found in part a), at
the same frequency w you found in part a). (5 pts)

(D) Suppose that the inductor, of inductance L, is constructed from a solenoid with
N turns over a length ¢, whose axis of symmetry lies on the Z axis.

Express the cross sectional area of the solenoid in terms of the inductance L, the 4
number of turns IV, the length £ and any fundamental constants.
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Department of Physics, Princeton University

Graduate Preliminary Examination
Part 11

Friday, January 11, 2013
9:00 am - 12:00 noon

Answer TWO out of the THREE questions in Section C (Quantum Mechanics) and TWO
out of the THREE questions in Section D (Thermodynamics and Statistical Mechanics ).

Work each problem in a separate examination booklet. Be sure to label each booklet with
your name, the section name, and the problem number. No calculators are permitted.
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Section C. Quantum Mechanics

1. A quantum particle moves in one dimension with energy as a function of wavenumber
BE(k). Its momentum is p = hk and is conserved. At time ¢ = 0 the wavefunction 9)(z,¢ = 0)
of this particle is a minimum-uncertainty wavepacket centered at the origin (z = 0) in real
space and with average momentum (p),—p = likg. Assume that the initial uncertainty in the
position 1/(22);— = o is large but finite, so the uncertainty in the momentum is small but
nonzero. Thus approximate E(k) by its Taylor expansion about kg keeping terms only to
order (k — ko).

(a) In terms of the given parameters; E(kp); and %‘E and %;g evaluated at k = ko, obtain the
normalized wavefunction v(z,t) at nonzero times . Do not make any assumption about the
dispersion relation E(k) other than that its first and second derivatives exist and are finite
af; kg.

(b) Calculate the expectation values: (z), (p)t, ((z — (z)¢)?)s at nonzero times .
[If you get bogged down: first do this problem assuming 47 = 0 before letting it be
nonzero. | .
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2. Consider two indistinguishable nonrelativistic bosons of mass m, constrained to move
one-dimensionally around a circle of perimeter L. The particles each have spin-1, and
they interact via a spin-independent potential that is a Dirac delta-function: V(z1,z2) =
g0(z1 — z2), where z; is the position on the circle (in arc length) of particle 1.

(a) First look at zero interaction, g = 0, being careful to only include states of the correct
symmetry for these indistinguishable spin-1 bosons. What are the energies and the degen-
eracies of the ground state and of the lowest-energy excited state? In each case, say what
value(s) of total spin these states may have.

(b) Add a weak interaction g # 0. Now what are the degeneracies of the ground state and
of the lowest-energy excited state? For each sign of g, say what value(s) of total spin these
states may have.

o/

(c) Solve for a twof;rticle ground state wavefunction, including showing the spin state. Do
this first at g = 0,/and then all other g # 0. In the latter case you may leave one parameter
in the wavefunction specified only as the solution to an equation that you will not be able
to solve analytically.
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3. Two distinguishable but equal-mass particles move and interact in three dimensions
(7; = (x4, ¥i, z:)) with the Hamiltonian
- Ao 2 = |2 k.o 12
H= —%Uvﬂ + [Val*) + §(|?"1| + 172]*) + g(ziws + y1y2 — 2212) -

Solve for the ground state wavefunction v (71,7%2) when it exists, and say for what range of
g it does exist (assume both m and k are positive).
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Section D. Thermo and Statistical Mechanics

/ 1. Consider a long molecule like DNA that is made out of two polymer strands, with links
connecting the monomers between one strand and the other; let the number of links be N.
Now imagine that we grab the ends of the two strands and pull them apart with a force F.
In order to lengthen the segment that we are pulling on, we have to break links. Each time
we break a link the energy of the molecule goes up by an amount A, the “bond energy” of
each link.

On the other hand, each time we break a link, the ends we are pulling on move apart by a
distance 2[,, where [, is the distance between the links along one strand. Thus, the energy
of the molecule with n links broken is E(n) = n(A — 2F,).

(a) Find an equation that relates the mean number of broken links (n) at temperature T to
the partition function Z.

(b) Define a = (—% . Evaluate the partition function Z. Show that in the limit of large
N, the behavior of Z is very different depending on whether F' is smaller or larger than a
“critical” value F,. What is value of and the physical meaning of F.?

(c) Use your result for Z to calculate (n) in terms of a in the limit of large N.
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2. A recent experiment on trapped atomic gases by the Zwierlein group at MIT reports the
data shown in the figure. In this problem you will try to gain an understanding of a part of
the data (the highlighted curve) which is well described by a free Fermi gas.

B,
.

Figure 1: Normalized compressibility versus normalized pressure from Ku et al., Science 335,
563 (2012).

a) The isothermal compressibility of a finite volume of gas is defined as

] (%)
V \ dp TN

Show that in the infinite volume limit this reduces to

1

o 28]
T n \Op
. v
where n = N/V.
b) Consider a three dimensional gas of spinless fermions of mass m and density n at T = 0.
Calculate its pressure po(n) and compressibility xo(n). o

¢) Now consider the gas at a non-zero temperature T'. Let us define

p(n,T)
po(n)

ﬁ(ns T) =

(©2013 Department of Physics, Princeton University, Princeton, NJ 08544, USA



Graduate Preliminary Examination, Friday, January 11, 2013 - Part II T

and

. _ &(n,T)
&(n,T) = ol

which are the quantities plotted in the figure.
Use dimensional analysis to show that & can be written as a function «(p) of  alone.

d) By construction, #(1) = 1. Calculate the leading asymptotic behavior of £ — 1 as p — 1.
[Useful result: p(n,T) = po(n){1 + % (X85)2 4 ...} ]

er(n)
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3. A metal has two phases, N (normal) and S (superconducting). Assume that in the normal
phase the magnetization M (per unit volume) due to an applied external magnetic field H
is negligible, so the magnetic induction or flux density B = po(H + M) = poH in the normal
metal phase.

The metal is cooled down to a temperature T in a large magnetic field H, and then H is
reduced to zero. At temperatures T' < T, it is observed that as H is reduced there is a

critical field
7\ 2
H =Hy|1—-1{| =
& °[ (z)

where a first-order phase transition from the normal state to the superconducting state
occurs. The magnetic flux is completely expelled from the metal, and B = 0 in its interior
(Meissner effect) for H < H,(T') in the superconducting state.

Recall that the magnetic variant of the Gibbs free energy (per unit volume) is G(T, H) =
U—~T8 — M'H, where M" = oM in SI units. (Ignore any thermal expansion of the metal,
and treat its volume as fixed).

(2). Find the difference of the entropy densities AS(T") = Sn(T") — Ss(T') between the
normal and the superconducting phases (with the assumption of negligible magnetization in
the normal phase, Sy(T) is independent of H).

(b). If the system is heated in the absence of a magnetic field (at H = 0) it undergoes a
continuous (second-order) phase transition from superconductor to normal metal at 7' = T...
What is the discontinuity in its specific heat per unit volume at this phase transition? (Make
a sketch showing how the specific heat varies with temperature near the transition). Which
phase has the larger specific heat?

(c). By how much is the ground-state (T=0) energy per unit volume of the superconductor
lower than that of the normal metal, when H = 07

?
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