J12Q2

A system of two indistinguishable spin-1/2 particles is governed by the Hamiltonian:

\[H = \frac{\mathbf{p}_1^2}{2m} + \frac{\mathbf{p}_2^2}{2m} + \lambda \frac{\mathbf{\sigma}_1 \cdot \mathbf{\sigma}_2}{|\mathbf{x}_1 - \mathbf{x}_2|} \]

where \(\mathbf{\sigma} \) are the Pauli spin operators of the two particles, \(\mathbf{p} \) and \(\mathbf{x} \) are their 3-D momenta and positions.

Find the ground state energies for the two cases:
(a) \(\lambda > 0 \)
(b) \(\lambda < 0 \)
(c) State the degeneracies of the ground state in each case, in the center of mass frame.

Solution

Here we assume \(\lambda \) is a dimensionless coefficient

We take the hint and rewrite the Hamiltonian in CM frame, with relative momentum operator \(\mathbf{p} \), momentum of CM operator \(\mathbf{P} \) and relative position \(\mathbf{x} = \mathbf{x}_1 - \mathbf{x}_2 \):

\[H = \frac{\mathbf{p}^2}{2\mu} + \lambda \frac{\mathbf{\sigma}_1 \cdot \mathbf{\sigma}_2}{|\mathbf{x}|} \]

where \(\mu \) is the reduced mass of the two particle system, which is \(m/2 \) here. As usual, we ignore the momentum of CM so the Hamiltonian that contributes to the system is simply:

\[H = \frac{\mathbf{p}^2}{2\mu} + \lambda \frac{\mathbf{\sigma}_1 \cdot \mathbf{\sigma}_2}{|\mathbf{x}|} \]

This is then in the same form as the Hamiltonian for the hydrogen atom.

\[H = \frac{\mathbf{p}^2}{2\mu} - \frac{e^2}{|\mathbf{x}|} \]

We can therefore borrow the form of the energy states:

\[E_n = \frac{\mu e^4}{2\hbar^2 n^2} \]

The spin-spin coupling term has two eigenvalues \(\epsilon_1 = (-3)\lambda \frac{\hbar^2}{4} \), corresponding to the singlet state (anti-symmetric in particle exchange) and \(\epsilon_2 = \lambda \frac{\hbar^2}{4} \), corresponding to the triplet state (symmetric).

Substitute \(\epsilon_i \) for \(e^2 \) back into the hydrogen energy states will give us the energy spectrum.

(a)

When \(\lambda > 0 \), ground state is the spin singlet state, with \(n = 1, l = 0 \) position state. Ground state energy is therefore:

\[E = \frac{\mu}{2\hbar^2} \epsilon_1 = \frac{9\lambda^2 \hbar^2}{32} = \frac{9\lambda^2 \hbar^2 m}{64} \]

Both position state and spin state are non-degenerate. Therefore this ground state is non-degenerate.

(b)

When \(\lambda < 0 \), the ground state is the spin triplet state. Because the triplet state is symmetric, we need an anti-symmetric position state. Therefore the position state is \(n = 2, l = 1 \) state.

\[E = \frac{\mu}{2 \cdot 2 \cdot \hbar^2} \epsilon_2 = \frac{\mu \lambda^2 \hbar^2}{16 * 8} = \frac{\mu \lambda^2 \hbar^2}{16 * 16} \]

Both spin and position states have 3 fold degeneracy. Therefore this state has a 9-fold degeneracy.