Problem:
An antenna consists of a circular wire loop of radius R, centered in the $x-y$ plane of a Cartesian coordinate system. The current has the same amplitude, $I = I(t)$, at all locations in the wire at a given time t. There is no net electrical charge on the wire. Assuming \dot{I}, the rate of change of the current, is slow enough that magnetic dipole radiation dominates any higher multipole, calculate:
(a) the vector potential $\vec{A} = \vec{A}(\vec{r}, t)$ and the scalar potential Φ at the location \vec{r} and time t when $r \gg cI/\dot{I}$.
(b) the magnetic and electric field, \vec{B} and \vec{E}, at \vec{r} and t.
(c) the energy flux, $S = S(\theta, \phi)$, as a function of the polar angles θ and ϕ.
(d) the total radiated power $P = \int S \sin(\theta) d\theta d\phi$.

Solution:
(a) According to the note at the bottom, I’ll put everything in terms of the magnetic dipole moment, which, in SI units, is as follows:
$$\vec{m}(t) = IA\hat{z} = \pi R^2 I(t)\hat{z}$$
(1)
The vector potential of a magnetic dipole takes the following form:
$$\vec{A}(\vec{r}, t) = -\frac{\mu_0}{4\pi rc} \vec{r} \times \vec{m} \left(t - \frac{r}{c} \right)$$
(2)
This is just a formula I have memorized. Along with the vector potentials for the electric dipole and the electric quadrupole, you can rederive anything they’d ask of you that could semi-reasonably be asked in 45 minutes, so yeah. Rewrite $\hat{z} = \cos(\theta)\hat{r} - \sin(\theta)\hat{\theta}$, so $\hat{r} \times \hat{z} = -\sin(\theta)\hat{\phi}$. Therefore,
$$\vec{A}(\vec{r}, t) = -\frac{\mu_0}{4\pi rc} m \left(t - \frac{r}{c} \right) \sin(\theta)\hat{\phi}$$
(3)
There is no net charge on the loop (stated in problem), so
$$\Phi(\vec{r}, t) = 0$$
(4)
(b) Determine the magnetic field directly from the vector potential:
$$\vec{B}(\vec{r}, t) = \nabla \times \vec{A} = \frac{\mu_0}{4\pi rc^2} m \left(t - \frac{r}{c} \right) \sin(\theta) (\hat{r} \times \hat{\phi}) = -\frac{\mu_0}{4\pi rc^2} m \left(t - \frac{r}{c} \right) \sin(\theta) \hat{\theta}$$
(5)
You can get the electric field from either the magnetic field or from the vector potential directly:
$$\vec{E}(\vec{r}, t) = -c\hat{r} \times \vec{B} = -\frac{\partial \vec{A}}{\partial t} = \frac{\mu_0}{4\pi rc} m \left(t - \frac{r}{c} \right) \sin(\theta) \hat{\phi}$$
(6)
(c) Use \vec{E} and \vec{B} to find the Poynting vector:

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} = \frac{c}{\mu_0} \left| \vec{B} \right|^2 \hat{r} = \frac{\mu_0}{16\pi^2 r^2 c^3} \left(\ddot{m} \left(t - \frac{r}{c} \right) \right)^2 \sin^2(\theta) \hat{r}$$

$$\implies S = \frac{\mu_0}{16\pi^2 c^3} \left(\ddot{m} \left(t - \frac{r}{c} \right) \right)^2 \sin^2(\theta)$$

(d) Oh, how nice of them to give us the formula for the power...

$$P = \int S \sin(\theta) \, d\theta \, d\phi = \frac{\mu_0}{8\pi c^3} \left(\ddot{m} \left(t - \frac{r}{c} \right) \right)^2 \int_0^\pi \sin^3(\theta) \, d\theta$$

$$= \frac{\mu_0}{8\pi c^3} \left(\ddot{m} \left(t - \frac{r}{c} \right) \right)^2 \int_0^1 du \, (1 - u^2)$$

$$= \frac{\mu_0}{6\pi c^3} \left(\ddot{m} \left(t - \frac{r}{c} \right) \right)^2$$

The denominator usually has a factor of 12, not 6 (which worried me for a second), but that’s because we haven’t time averaged \ddot{m} yet, which isn’t a factor of 1/2 for arbitrary magnetic moments.