1 Mechanics

1.1 Problem 2

The kinetic energy term due to \(m \) is a little tricky. To get it correctly, we should write the coordinates of \(m \) (\(X \) and \(Y \)) in terms of \(x \) and \(\theta \). A little bit of trigonometry and looking at the picture tells you that:

\[
X = xc\cos\theta - L\sin\theta \\
Y = L\cos\theta - xs\sin\theta
\]

\[
\dot{X} = \dot{x}\cos\theta - xs\sin\theta - L\cos\theta\dot{\theta} \\
\dot{Y} = -L\sin\theta\dot{\theta} + \dot{x}\sin\theta + xc\cos\theta\dot{\theta}
\]

\[
\dot{X}^2 + \dot{Y}^2 = \dot{x}^2 + x^2\dot{\theta}^2 + L^2\dot{\theta}^2 - 2\dot{x}L\dot{\theta}
\]

Since we want the linearized equations of motion, we want the lagrangian to contain terms of order up to 2. Thus,

\[
\dot{X}^2 + \dot{Y}^2 \approx \dot{x}^2 + L^2\dot{\theta}^2 - 2\dot{x}L\dot{\theta}
\]

\[
\mathcal{L} = \frac{1}{2} ML^2\dot{\theta}^2 + \frac{1}{2} m(\dot{x}^2 + L^2\dot{\theta}^2 - 2\dot{x}L\dot{\theta}) + (M + m)gL\cos\theta + mgx\sin\theta
\]

Applying the Euler-Lagrange equations gives the equations of motion:

\[
(M + m)L^2\ddot{\theta} - m\ddot{x}L = -(M + m)gL\dot{\theta} + mgx \quad (1) \\
-L\ddot{\theta} + \ddot{x} = g\dot{\theta} \quad (2)
\]

These two equations can be written together as a matrix equation:

\[
M\ddot{\xi} = -K\xi
\]

where \(\xi \) has components \(x \) and \(\theta \). We will guess that the solution is oscillatory, and so to get the eigenfrequencies, we have to solve the transcendental equation:

\[
\det(K - \omega^2M) = 0
\]

I get two solutions from this equation \(\omega_1^2 = g/L \) and \(\omega_2^2 = -2mg/(ML) \). I was really careful in writing the matrices and the characteristic equation, so I don’t know how I reached this problem. It could be, also, that my solution is correct, the negative \(\omega^2 \) meaning that the corresponding eigenmode is of exponential form, but I don’t think so. I’ll wait for opinions.