Let’s change notation so that the problem reduces to the following. Suppose we have a harmonic oscillator with Hamiltonian

\[H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2 \]

(1)

and eigenfunctions \(\phi_n(x) \). If at \(t = 0 \) the wavefunction is \(\psi(x, 0) = e^{-ipx_0}\phi_0(x) = \phi_0(x - x_0) \), what is \(\psi(x, t) \)? (I assumed \(\hbar = 1 \).)

Since the time evolution operator is \(e^{iHt} \), we need to compute \(\psi(x, t) = e^{iHt}e^{-ipx_0}\phi_0(x) \). This quantity can be easily computed using the Heisenberg picture as an intermediate step. In the Heisenberg picture, the equations of motion for \(x(t) \) and \(p(t) \) are

\[p(t) = m\dot{x}(t) \quad \dot{p}(t) = -m\omega^2x(t). \]

(3)

The solution of (3) that satisfies \(p(0) = p \) and \(x(0) = x \) is

\[x(t) = x \cos \omega t + \frac{p}{m\omega} \sin \omega t \quad p(t) = -m\omega x \sin \omega t + p \cos \omega t. \]

(4)

Here, \(x(t) \) and \(p(t) \) are Heisenberg operators, while \(x \) and \(p \) are Schrödinger operators. It follows that

\[e^{iHt}e^{-ipx_0}e^{-iHt} = e^{-ip(t)x_0} = e^{-ix_0(p \cos \omega t - x \sin \omega t)} \]

\[= e^{ixx_0m \sin \omega t}e^{-ipx_0 \cos \omega t}e^{-\frac{1}{2}x_0^2m \sin(2\omega t)} \]

(5)

Hence

\[\psi(x, t) = e^{iHt}e^{-ipx_0}e^{-iHt}e^{i\omega t}\phi_0(x) \]

\[= e^{ixx_0m \sin \omega t}e^{-ipx_0 \cos \omega t}e^{-\frac{1}{2}x_0^2m \sin(2\omega t)}e^{i\omega t}\phi_0(x) \]

\[= e^{i\omega t}e^{-\frac{1}{2}x_0^2m \sin(2\omega t)}e^{ixx_0m \sin \omega t}e^{i\omega t}\phi_0(x - x_0 \cos \omega t). \]

(6)

It is clear that one can replace \(\phi_0(x) \) by \(\phi_n(x) \) throughout and everything still holds with the only difference that \(e^{i\omega t} \) in (6) is replaced by \(e^{i\omega t(n+1/2)} \).