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Since the energy is constant, it must be independent of θ. Therefore, for the two terms that
depend on θ to cancel, we need for them to have the same θ-dependence. Thus,

n = 5 (1)

1.2 (b)
In order for the two θ-dependent terms in the energy equation to cancel out, we need for them to
add to 0:
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1.3 (c)
Now that the two θ-dependent terms have cancelled, there are none left, therefore:
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1.5 (e)
Let b be the perpendicular distance between the origin and the direction of the initial velocity (this
distance is called the impact parameter). Let d be the distance of closest approach and let vd be
the velocity of the particle at that point. Then the equation for conservation of angular momentum
gives:
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Energy conservation

Solve both equations for d to get:
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Notice that in calculating this d, we assumed that it was greater than 0 (since, for instance, we
wrote the potential energy at r=d as a finite quantity). But we are interested in finding values of
b such that the distance of closest approach is exactly 0. So we need values of b for which our
calculation of d leads to a contradiction, in other words, values of b for which the quantity under
the square root is negative. The critical value is that for which that quantity is 0:
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