3) a. ideal gas \(U(T, V, N) = U(T, N) \)
\[dU = 0 \text{ during isothermal compression} \]
\[dU = \delta Q - dW \]
\[\delta Q = dW = P_dV = \frac{NKT_1}{V} dV \]
\[\Delta Q = S V_1 \frac{NKT_1}{V} \]
\[\Delta Q = NKT_1 \ln \left(\frac{V_2}{V_1} \right) \]
\[Q_{sys} = NKT_1 \ln \left(\frac{V_2}{V_1} \right) \]

b. Work is done on the large volume by the small one \(\text{OK} \)

\[(\delta Q_{system} = 0) \Rightarrow \delta Q_A + \delta Q_B = 0 \]
\[\delta W_A + \delta W_B = 0 \]
\[\delta Q_A = \delta W_A = - \frac{NKT_1}{V_1} dV_1 \]
\[\delta Q_B = \delta W_B = \frac{NKT_1}{V_2} dV_2 \]
\[dW = \delta W_A + \delta W_B \]
\[dW = P_dV_A + P_B dV_B \]
\[dW = (P_B - P_A) dV_B \]
\[dW = \left(\frac{NKT_2}{V_B} - \frac{NKT_A}{V_A} \right) dV_B \]

\[dW = NKT \left(\frac{T_B}{V_B} - \frac{T_A}{V_A} \right) \]

\[dW = N K \left(\frac{T_B}{V_B} - \frac{T_A}{V_A} \right) dV_B \]

\[\text{Unfortunately, } T_B \text{ is fixed} \]

\[\text{small volume expands } \Rightarrow T_B \text{ could dec from } T_2 \text{ or remain const} \]
\[\text{large volume contracts } \Rightarrow T_A \text{ could inc from } T_1 \text{ or remain const} \]
\[\text{If } T_B \text{ decreases as } T_A \text{ increases, then } dW \text{ will decrease from eqn (1). Therefore in order to} \]
\[\text{maximize the work, we want to allow the temperatures to equilibrate after each infinitesimal amount of} \]
\[\text{work done. i.e. } T_A = T_B \text{ at all points in time. ok} \]

\[T_2 = \text{the final temperature of the system,} \]
\[\delta Q_{system} = 0 \Rightarrow S_{initial} = S_{final} \]

For an ideal gas \(S = \frac{C_V}{T} \ln \left(\frac{T}{V_{ref}^{\gamma-1}} \right) \]

\[S_{initial} = S_{final} \Rightarrow \left(C_V \text{ is the same for } A \text{ and } B \right) \]
\[\Rightarrow \ln \left(\frac{T_1 V_1^{\gamma-1}}{V_{ref}^{\gamma-1}} \right) + \ln \left(\frac{T_1 V_2^{\gamma-1}}{V_{ref}^{\gamma-1}} \right) = \ln \left(\frac{T_2 V_B^{\gamma-1}}{V_{ref}^{\gamma-1}} \right) + \ln \left(\frac{T_2 V_B^{\gamma-1}}{V_{ref}^{\gamma-1}} \right) \]
Since \(T_{FB} = T_2 \) and \(P_{FB} = P_f \), \(V_{FB} = V_{fa} = V_f = \frac{V_1 + V_2}{2} \)

\[
T_1^2 (V_1 V_2)^{\gamma - 1} = T_2^2 (V_{fa} V_{FB})^{\gamma - 1} = T_2^2 (V_f^2)^{\gamma - 1}
\]

\[
T_2 = T_1 \left(\frac{V_1 V_2}{V_1 + V_2} \right)^{(\gamma - 1)/2}
\]

\[
T_2 = T_1 \left(\frac{4V_1 V_2}{(V_1 + V_2)^2} \right)^{(\gamma - 1)/2}
\]

Since \(\delta Q_{\text{sys}} = 0 \), the work done by the system equals the change in internal energy.

\[
U = \frac{x}{2} N k_B T \text{ where } x \text{ is the number of degrees of freedom (for an ideal gas)}
\]

\[
U_{\text{initial}} = \frac{x}{2} N k_B T_1 + \frac{x}{2} N k_B T_1 \quad (N = \text{number of particles in A})
\]

\[
U_{\text{final}} = \frac{x}{2} N k_B T_2 + \frac{x}{2} N k_B T_2 \quad (N = \text{number of particles in B})
\]

\[
\delta Q_{\text{sys}} = 0 = \delta U_{\text{sys}} + \delta W_{\text{sys}}
\]

\[
\Rightarrow W = -\Delta U_{\text{sys}}
\]

\[
W = -\left[xN k_B (T_2 - T_1) \right]^x
\]

\[
W = xN k_B (T_1 - T_2) \quad \Rightarrow x = \frac{2}{\gamma - 1}
\]

\[
W = xN k_B T_1 \left[1 - \left(\frac{4V_1 V_2}{(V_1 + V_2)^2} \right)^{(\gamma - 1)/2} \right]
\]

\[
W = xN k_B T_1 \left[1 - \left(\frac{V_1 V_2}{(V_1 + V_2)^2} \right)^{(1/x)} \right]
\]

\[
C_v = \frac{\partial Q}{\partial V_2} = \frac{xN k_B T_1}{V_2} \quad (2)
\]

\[
\frac{\partial Q}{\partial V_2} = -\frac{xN k_B T_1}{V_2}
\]

\[
\frac{\partial W}{\partial V_2} = \frac{xN k_B T_1}{V_2} \left[1 - \left(\frac{4V_1 V_2}{(V_1 + V_2)^2} \right)^{(1/x)} \right]
\]

\[
= \frac{xN k_B T_1}{V_2} \cdot \left[\left(\frac{V_1 V_2}{(V_1 + V_2)^2} \right)^{(1/x)} - 1 \right]
\]

\[
= \frac{xN k_B T_1}{V_2} \left[\left(\frac{V_1 V_2}{(V_1 + V_2)^2} \right)^{(1/x)} - \frac{1}{x} \cdot \left(\frac{V_1 V_2}{(V_1 + V_2)^2} \right)^{(1/x)} \right]
\]

\[
= \frac{xN k_B T_1}{V_2} \left[\left(\frac{V_1 V_2}{(V_1 + V_2)^2} \right)^{(1/x)} - \frac{1}{x} \cdot \left(\frac{V_1 V_2}{(V_1 + V_2)^2} \right)^{(1/x)} \right]
\]

\[
= \frac{xN k_B T_1}{V_2} \left[\left(\frac{V_1 V_2}{(V_1 + V_2)^2} \right)^{(1/x)} - \frac{1}{x} \cdot \left(\frac{V_1 V_2}{(V_1 + V_2)^2} \right)^{(1/x)} \right]
\]

\[
= \frac{xN k_B T_1}{V_2} \left[\left(\frac{V_1 V_2}{(V_1 + V_2)^2} \right)^{(1/x)} - \frac{1}{x} \cdot \left(\frac{V_1 V_2}{(V_1 + V_2)^2} \right)^{(1/x)} \right]
\]

For any \(V_1, V_2 \), \((V_1 - V_2)^2 \geq 0 \)

\[
V_1^2 - 2V_1 V_2 + V_2^2 \geq 0
\]

\[
V_1^2 + 2V_1 V_2 + V_2^2 \geq 4V_1 V_2
\]

\[
(V_1 + V_2)^2 \geq 4V_1 V_2
\]
Also for an\(x \) \(V_1 \), \(V_2 \), \(V_1 + V_2 \geq V_1 - V_2 \quad (V_1, V_2 > 0) \)
\[
\frac{\Delta W}{\Delta V_2} = \frac{\Delta Q}{\Delta V_2} (\ast \ast \leq 1) (\# \times) (\ast \ast \leq 1) \quad (\frac{1}{x} \text{ is } \ll 1)
\]
\[
\Rightarrow \frac{\Delta W}{\Delta V_2} = \frac{\Delta Q}{\Delta V_2} \Delta \quad (2) \text{ where } 0 \leq \Delta \leq 1
\]

For \(V_1 = V_2 \), \(W = Q = 0 \) (from expressions in part (a) and (b))

In the problem, \(0 \leq V_2 < V_1 \), \(W > 0 \), \(Q > 0 \)

From (2), \(\frac{\Delta Q}{\Delta V_2} < 0 \) and \(\Delta V_2 < V_1 \). \(W \) and \(Q \) increase from 0.

From (3), \(\frac{\Delta W}{\Delta V_2} > \frac{\Delta Q}{\Delta V_2} \) (since both are negative).

As we decrease \(V_2 \) from \(V_1 \), \(W \) and \(Q \) increase from 0.

Since \(\frac{\Delta Q}{\Delta V_2} \) is smaller (i.e., more negative), \(Q \) increases faster than \(W \).

Thus, \(Q > W \) for \(0 \leq V_2 < V_1 \), as is the case in the problem.