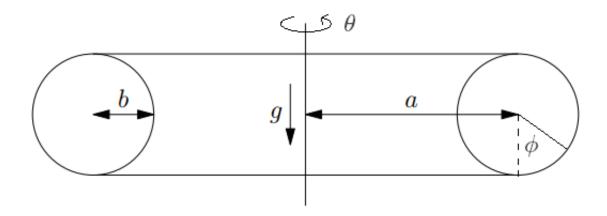
J01M.1

Problem

Find the frequency of small oscillations about uniform circular motion of a point mass that is constrained to move on the surface of a torus (donut) of major radius a and minor radius b whose axis is vertical.



Consider the circular cross section of the right side of the torus. Let ϕ be the angle the point mass makes with the vertical. Let r , z , and θ be the standard cylindrical coordinates of the point mass relative to the axis of the torus.

$$z=-b\cos\phi \ \dot{z}=b\sin\phi\dot{\phi} \ r=a+b\sin\phi \ \dot{r}=b\cos\phi\dot{\phi}$$

Now we form the Lagrangian:

$$L = rac{1}{2} m \dot{z}^2 + rac{1}{2} m \dot{r}^2 + rac{1}{2} m r^2 \, \dot{ heta}^2 - m g z$$

$$L=rac{1}{2}b^2{\dot{\phi}}^2+rac{1}{2}m(a+b\sin\phi)^2{\dot{ heta}}^2\,+gb\,\cos\phi$$

The Euler-Lagrange Equations for heta and ϕ .

(1)
$$m(a+b\sin\phi)\dot{ heta}=const=l$$

(2)
$$b\ddot{\phi}=(a+b\sin\phi)\dot{ heta}^2\cos\phi-g\sin\phi$$

Equilibrium occurs when $\ddot{\phi}=0$ and $\dot{ heta}=\Omega$. Then (2) gives the equilibrium angle ϕ_0 :

(3)
$$g an\phi_0=(a+b\sin\phi_0)\Omega^2$$

And (1) gives us a value for l

(4)
$$l=m(a+b\sin\phi_0)\Omega$$

Eliminate θ from (2) using (1)

$$b\ddot{\phi}=rac{l^2}{m^2(a+b\sin\phi)}\cos\phi-g\sin\phi$$

Introduce a small displacement
$$\phi_0 o \phi_0 + \epsilon$$
 . $b\ddot{\epsilon} = rac{l^2}{m^2(a+b\sin(\phi_0+\epsilon))}\cos(\phi_0+\epsilon) - g\sin(\phi_0+\epsilon)$

Expanding the sines and cosines, then using the small angle approximation leads to:

$$b\ddot{\epsilon} = rac{l^2}{m^2(a+b(\sin\phi_0+\epsilon\cos\phi_0))}(\cos\phi_0-\epsilon\sin\phi_0) - g(\sin\phi_0+\epsilon\cos\phi_0)$$

Taylor expanding the denominator

$$b\ddot{\epsilon} = rac{l^2}{m^2(a+b\sin\phi_0)}(\cos\phi_0 - \epsilon\sin\phi_0 - rac{b\epsilon\cos^2\phi_0}{a+b\sin\phi_0}) - g(\sin\phi_0 + \epsilon\cos\phi_0)$$

Observe that the terms independent of ϵ are the equilibrium condition and sum to 0 giving us:

$$b\ddot{\epsilon} = -(rac{l^2}{m^2(a+b\sin\phi_0)}(\sin\phi_0 + rac{b\epsilon\cos^2\phi_0}{a+b\sin\phi_0}) + g\cos\phi_0)\epsilon$$

Use (4) to eliminate l and then (3) to eliminate Ω

$$\ddot{\epsilon} = -rac{g}{b}(an\phi_0(\sin\phi_0+rac{b\epsilon\cos^2\phi_0}{a+b\sin\phi_0})+\cos\phi_0)\epsilon$$

Therefore the frequency of small oscillations is:

$$\omega^2=rac{g}{b}(an\phi_0(\sin\phi_0+rac{b\epsilon\cos^2\phi_0}{a+b\sin\phi_0})+\cos\phi_0)$$

3 thoughts on "J01M.1	.1"	01N	"(0	on	hts	thoug	3
-----------------------	-----	-----	-----	----	-----	-------	---

OK.

Approach is correct. However something should be fixed.

Note that a particle on a torus has two degrees of freedom. But your Lagrangian has only one degree of freedom ϕ , because you substituted Ω for $\dot{\theta}$ (which is not legitimate). $\dot{\theta}$ is not a conserved quantity of the problem (it changes as ϕ changes). You indeed can eliminate $\dot{\theta}$, but not in such a way.

I have updated my solution to use angular momentum to eliminate $\dot{ heta}$