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al Me
hani
s1.1 m/m98j1 VThe a
tion with Lagrange term for 
onstraint in
luded isZ w�w yp1 + _y2dx� ��Z w�wp1 + _y2dx� L� (1)The 
onserved quantity, 
harge 
orresponding to the translations along x axis isH = p _y � L; p = ÆLÆ _y ; (2)so p = (y � �) _yp1 + _y2 : (3)Up to the 
onstant term,H = �(y � �) 1p1 + _y2 : (4)After expressing _y = f(y) and integrating, one getsy = �+H 
osh xH ; (5)and the length 
onditionZ w0 p1 + _y2 = Z w0 
osh xH dx = H sinh wH = L (6)1.2 m/m98j2 VLet the �rst parti
le is at distan
e r and the angle � from the 
enter of mass (its motion de
ouples). Then, theLagrangian isL = 2m2 [r2 _�2 + _r2℄� k2 (2r � 2r0)2 (7)The momentums arepr = 2m _r; pal = 2mr2 _� (8)4



and the Hamiltonian isH = p2r4m + p2�4mr2 + 124k(r � r0)2 (9)The angular momentum p� 
onserves and equations for � de
ouplep� = 
onst; _� = �H�p� = 12mr2 p� (10)while fora. radial 
omponent_r = �H�pr = 12mpr (11)2m�r = _pr = ��H�r = 2 p2�4mr3 � 4k(r � r0) (12)b. The system will os
illate between two turning points. They �rst one is just the initial point, the se
ond isdetermined from equation for vanishing kineti
 energy in that pointp2�4mr20 = p2�4mr2 + 2k(r � r0)2 (13)Form small v one has small p� and as a result�l = 2(r � r0) = 12mv2kr0 ; (14)where r0 = l=2, and v is initial velo
ity in the lab frame.1.3 m/m98j3 VThe equations of motion are�x = g � N sin!t (15)�y = N 
os!t (16)_y = _x tan!t (17)With an anzatz N = A sin!t one gets�x = g � A sin2 !t (18)�y = A 
os!t sin!t (19)_y = _x tan!t (20)Then,_x = gt� 12At + A4! sin 2!t (21)and _y = A4! (1� 
os 2!t) (22)All equations are satis�ed with A = 2g andx = g4!2 (1� 
os 2!t) (23)y = g4!2 (2!t � sin 2!t) (24)That is 
y
loid. 5



1.4 m/m98m1 VFrom equation for for
es at an in�nitesimal pat
h of 
ir
le dT = ��Td� follows T = T0e��� = mge�� �2 .1.5 m/m98m2 VWe 
onsider 
ase, when the horizontal line lies in the same verti
al plane as a 
ir
le, below it.L = 12m �(r _�)2 + _x2�+mgr 
os�� 12k �(x� r sin�)2 + (a� r 
os�)2� (25)for small de
e
tions, where y = r�, gives the 
anoni
al kineti
 term and the following bilinear form for the potentialterm  k �k�k ka+mgr ! (26)with the eigenvalues� = 12 ��(k + k1)�p(k + k1)2 � 4(kk1 � k2)� ; (27)where k1 = ka+mgr and frequen
ies !2 = �m .1.6 m/m98m3 Va. v =p2gh = 4:5m=s2 (28)b. Balloon is in
lined in the dire
tion of the a

eleration with the angle tan � = ag = 0:1. 
.MgS = �gH; H = M�S = 3 
m (29)d. �P = 4 �R = 20Pa (30)e. Sin
e�rv = 1�rp (31)andP vi = 0, where vi are in
oming velo
ities,X(pi � p
enter) = 0: (32)Then p
enter = 14(2�+ 1)p (33)it should be greater than p for the 
ow to go out. Therefore� > 32 (34)1.7 m/m99j1 Tm99j2 FMg = tg�R = b� a sin �Mw2R = F and T = 2�w Thus T = 2�q b�a sin �gtg� 6



1.8 m/m99j2 Tm99j2 r2 = x2 + y2 Lagrangian isL = m2 [r2 _�2 + _r2℄�mgpr2 � R2 (35)Equation of motion mr2w = L = 
onst ( _� = w) andm�r = L2mr3 � mgrpr2 � R2 (36)The stationary orbit is when _r = 0 and r2 = r20 = R2 + g2w�4 Equation of motion for small 
u
tuation � = r � r0 is�� + 
2� = 0
2 = w2(3� R2w4g2 ) (37)The os
illations are unstable if 
2 < 0 or when (here we substitute expression for w from formula for r0)r20 < 43R2 (38)1.9 m/m99j3 Tm99j2 For
es a
ting on the element of rod from x to x+ dx (x 2 [�L=2::L=2℄) all together gives zero result:T (x+ dx) + dxm(R+ x)w2L = T (x) + dxmMGL(R + x)2 (39)After integrating one getsT (x) = � mMGL(R + x) � mx(R+ x=2)w2L +C (40)The 
ondition that total gravitational for
e is equal to total 
entrifugal for
e is T (L=2) = T (�L=2). Solving this
onstraint we will �nd w2 = MG=R(R2 � L2=4), and after substituting this ba
k we will have thee following resultfor T (x)T (x) = � mMGL(R + x) � mMGx(R+ x=2)w2LR(R2 � L2=4) + C (41)Now we will use 
ondition that at the end of the rod there should not be any tension (end of the rod is massless). OrT (L=2) = T (�L=2) = 0. This givesC = mMG(R2 + L2=8)RL(R2 � L2=4) (42)Now we 
an 
al
ulate T (0)T (x = 0) = 3mMGL8R(R2 � L2=4) (43)1.10 m/m99m1 VFrom 
onservation of an angular momentum there is a rotating frame in whi
h ball moves only in the verti
al dire
tion.Let the frame 'bar' rotate with 
 
ounter 
lo
kwise.!x = !�x 
os 
t� !�y sin
t (44)!y = !�x sin
t+ !�y 
os
t (45)7



(the same relation between any 'bar' and lab ve
tor 
omponents). Then a

eleration-for
e equations of motion in labframe: m _v�y = 0 (46)m( _v�x � 
2r) = N�x (47)m _vz = �mg +Nz (48)and angular momentum-angular a

eleration equations of motion in lab frameJ _!z = rN�y (49)J _!x = r sin
tNz (50)J _!y = �r 
os
tNz (51)
an be rewritten into 'bar' frameJ _!z = rN�y (52)J( _!�x �
!�y) = 0 (53)J( _!�y +
!�x) = �rNz (54)Sin
e N�y = 0_!z = 0; !z = �
Rr : (55)Substituting vz = r!�y in the (??) one getsJ( _!�x �
!�y) = 0 (56)J( _!�y +
!�x) = �r(mr2 _!�y �mgr) (57)and then�J �!�y + J
2!�y = 0; �J = J +mr2 (58)with os
illating solution!�y = B sin �t; (59)where �2 = 
2 JJ+mr2 . From !�x(0) = 0 one getsB = � mgr(J +mr2)� (60)whi
h determinesvz = r!�y sin �t = � mgr2(J +mr2)� sin �t (61)and z = � mgr2(J +mr2)�2 (1� 
os �t) = �52 g
2 (1� 
os �t) (62)The ball will be os
illating between two horizontal lines. 8



1.11 m/m99m2 VThe potential 1r 2 has the same form as an e�e
tive potential for a parti
le moving along radius due to its angularmomentum. Therefore (for the e�e
tive s
attering parti
le, in the 
entral 
oordinate system, where � = � is zeros
attering), givenm2 ( _r2 + M20m2r2 + �r2 ) = E0 (63)and rewriting� = Z M0drq2E0m � M20+�m2r2 1mr2 (64)one 
an immediately �nd the answer without integrating, just from 
omparison with a freely moving parti
le� = �s M20M20 +m�2 (65)(Here M0 and m are for the e�e
tive parti
le, m = meff = m1m2m1+m2 and M0 = bvmeff , and meff = 23M ).The in
oming light parti
le (whi
h is 2 times lighter), will s
atter in the lab frame at the angletan � = sin��13 + 23 
os(� � �) (66)1.12 m/m99m3 Va. From the fun
tional for the energyL = Z 2�xdx(�p1 + (y0)2 + �gy) (67)in the limit y0 ! 0 one gets the stationary equationddx (x�y0) = x�g; (68)with solutiony(x) = x2�g4� (69)b. In
luding dependen
e on time in lagrangian with zero angular mode, one getsL = Z 2�xdx12(�(�ty)2 � � (�xy)2) (70)with the standard equations of motion for 
ylindri
ally symmetri
al waves�t(x��ty) � �x(x�y) = 0 (71)Plugging y(x; t) = y(x)ei!t one getsd2ydx2 + 1x dydx + 
2y = 0 (72)where 
2 = �!2�Its solutions are given by Bessel fun
tions. With x = 1
 ~x the equation be
omes 
anoni
al and the answer isy = J0(
x). Let 
0 is the �rst root J0(
0) = 0, then! =s �
20�R2 (73)9



1.13 m/m00j1 Tm00j1Let �(x) be the angle between the tangential line to ark (at point x) and horizontal line. Obviously tg� = y0.Then the mass of the element of ark from x to x + dx is dm = �dl = �dx
os� . Let us �!N be the normal (no gluing-notangential) for
e in ar
. Then �!N = x̂N 
os�+ ŷN sin�. The element of ar
 is in rest. As a 
onsequen
es the sum ofall for
es a
ting on it is zero. These for
es are: normal for
e at the one end ( at x), normal for
e at another end (atx+ dx) and gravitational for
e.N 
os�(x+ dx)�N 
os�(x) = 0 (74)N sin�(x+ dx)� N 
os�(x) + dmg = 0 (75)Or N sin�(x) = C = 
onst (76)and thus(Ctg�)0 + �g
os� = 0 (77)As a result� �gdxC = d�
os� (78)and then� �gdxC = d(y0)p1 + (y0)2 (79)Integrating this we gety0 = sh(�gC (x� x0)) (80)At lasty0 = � C�g 
sh(�gC (x� x0)) (81)Ar
 has form of so-
alled 
hain-line (
sh). C has sen
e of horizontal for
e in ar
.1.14 m/m00j2 Tm00j2 Let '(t) = � � �(t) and '0 = '(t = 0) And also let l 2 [0::L℄ be the 
oordinate along one rod, su
h as l = 0 isa free end (on the 
oor) and l = L is a tied end. Then the 
oordinates arex(l) = (L � l) 
os' (82)y(l) = l sin' (83)v2 = _x2 + _y2 = _'2[l2 + sin2'(L2 � 2Ll)℄ (84)The kineti
 energy of one rod isE = Z L0 dlm2L v2 = mL2 _'26 (85)Energy 
onservation low saysmL2 _'26 + mgL sin'2 = mgL 
os �2 (86)10



a). The moment just before the rods tou
h the 
oor is when ' = 0. This time _x = 0 sin
e it is proportional to sin'.Thus the velo
ity is verti
al and equalL _' 
os' =p3gL 
os � (87)b). Now we will �nd the for
e between the tied ends. Due to the symmetry these for
e (F) is horizontal, and this isonly one horizontal for
e a
ting on the rod. A

ording to the se
onds Newton's low, applied to the 
enter of mass ofthe rodF (t) = m�x(t) (88)We know the dependen
e x(t) = x('(t)) and _'(t) = _'('(t)) (energy 
onservation low). Thus �(t) = _'2 d2d'2 x(') +dd'x(') dd' _'(') _' The se
ond term gives no 
ontribution sin
e dd'x(') proportional to sin' and vanishes when ' = 0.And the 
ontribution of the �rst one is�x(' = 0) = 3g2 
os � (89)Or, �nallyF = 3mg2 
os � (90)1.15 m/m00j3 Tm00j3Let r be the distan
e between the hole in the table and mass m2. Then the largarngian isL = 12[(m1 +m2) _r2 +m2r2 _'2℄�m2gr (91)Equations of motion arem1r2 _' = L' = 
onst (92)(m1 +m2)�r = �m2g + L2'm1r3 (93)The equilibrium position is r0 = m2gm1w2 , where w = _'. We want to 
onsider small os
illations of variable � = r � r0.Expanding up to the �rst order in � the equation of motion for rwe will get�� +
2� = 0 (94)where
2 = 3L2'm1(m1 +m2)r40 = 3m1m1 +m2w2 (95)We know that the orbit is 
losed () 
 = wn)and there is only one minimum (maximum) per period () n = 1). Thusm2 = 2m11.16 m/m00m1 VThe potential is (a)GM 12� Z d�jR+ rei�j = GM 12� 1R Z d�(1 + 2x 
os � + x2)�1=2 = GMR �1 + 14x2�+O(x3); (96)where x = rR , and (b)!20R = GMR2 �1 + 34 r2R2� (97)11



To �nd small os
illations 
onsider the Hamiltonian form withp� = mR2 _�; pr = m _R; (98)and H = p2r2m + p2�2mR2 � GMmR �1 + 14 r2R2� (99)The stationary point for r motion 
orresponds top2�mR30 = GMmR20 �1 + 34 r2R20� (100)Plugging it in the e�e
tive potential term, and taking the se
ond derivative, one �nds�2V�R2 = GMmR3 �1� 34 r2R2� (101)Then,!r!� = 1� 34x2 (102)and �� = 2�34x2 (103)1.17 m/m00m2 VLet � is an angle between the line from the 
orner to the 
enter of the ladder and the 
oor. Then from 
onservationof energym2 _�2r2 + J2 _�2 = mgr(sin �0 � sin �) (104)one �nd the relation between _� and �, and also equation of motion for ��� = �mgrJeff 
os � (105)The x 
oordinate of the 
enter of mass moves with an a

eleration�x = ���r sin � � _�2r 
os � (106)When the ladder separates from the wall �x = 0, thusmgrJeff r 
os �
 sin �
 � _�2
r 
os �
 = 0 (107)and the result for 
riti
al angle issin �
 = 23 sin �0 (108)
12



1.18 m/m00m3 TLgrangian of our system isL = m2 [R2 _�2 + w2R2 sin2 �℄ +mgR 
os � (109)Using that w2 = gR we obtain the system with e�e
tive potential energy of the formU = � gR [
os � + 12 sin2 �℄ (110)and with kineti
 energy 12 _�2. Now the period of os
illations with amplitude � isT (�) = 4sR2g Z �0 dtq
os t� 
os � + 12(sin2 t� sin2 �) (111)Expanding near zero, treating t; � << 1 we getT (�) = 8�sRg Z 10 dtp1� t4 (112)1.19 m/m01j1 Tm01j3 As usual we use 
ylindri
al 
oordinates andL = m2 [ _r2 + r2 _�2℄�mgz (113)Here z = �b 
os and r = a+ b sin Angular moment 
onservation low givesmr2w = L+ 
onst (114)where w = _�. Cir
ular orbit 
orresponds to the angle  0 su
h as tg 0 = w2r( 0)g . Equation of motion in the terms ofr is m�r = L2mr3 �mdzdr (115)And frequen
y of small os
illations is
2 = 3w2 � d2zdr2 = 3w2 � gb 
os3  0 (116)1.20 m/m01j2 Tm01j2 The most important quantity in this problem is the angle between line, whi
h tangential to the Earth's surfa
eand the line, whi
h is tangential to the radius. If we will drop se
ond order in � we 
an treat dr(�)rd� also as a smallquantity and drop it's se
ond order as well. Then this angle � is just equal to � = �dr(�)rd� (Minus here is due to thesign of d�). The 
entrifugal for
e on the surfa
e isF = mw2r(�) 
os � (117)and dire
ted to the axis of Earth's rotation. Together with gravitational for
e mg, dire
ted along the radius this for
eshould form the for
e just perpendi
ular to the surfa
e. Using "sin" theorem we getsin�(�)F = sin(� + �(�))mg (118)(note that here g depends on �). We will drop se
ond order of � and the natural dimensionless small parameter will bew2reg(re) . Expanding in this parameter we 
an negle
t the dependen
e in g on � and � in sin(�+�(�)). After integratingwe will haver = re(1� w2re sin2 �2g(re) + O((w2reg(re) )2)) (119)Thus � = w2re2g(r3) = 3w28�G� 13



1.21 m/m01j3 Tm01j3Let the (
onstant in time) angle between 
onserved angular momentum and axis of Earth be  , angular frequen
yof rotation is w and pre
ession frequen
y is 
. Sin
e no for
es a
t on the Earth angular momentumI(t)ij = (Omega(t) + w(t))j =Mi = 
onst (120)Let us 
onsider moment t. Let 
hoose the 
ordinate system in the way that M has only z proje
tion and 
enter ofEarth has zero y 
oordinate. ThenM = f0; 0;Mg (121)
 = f0; 0;
g (122)w = fw sin ; 0; w 
os g (123)In the 
oordinate frame , 
orresponding to Earth
 = f�
 sin ; 0;

os g (124)w = f0; 0; wg (125)In this frameI(
 + w) = f�Ixx
 sin ; 0; Izz(
 
os +w)g (126)Going ba
k to the inertial frame ,I(
 + w) = f�Ixx
 sin 
os + Izz(
 
os +w) sin ; 0; 
os Izz(
 
os + w) + Ixx
 sin2  g (127)Now we have to satisfy our assumption about dire
tion of M . As a 
onsequen
es0 = �Ixx
 sin 
os + Izz(
 
os +w) sin (128)And 
 = �w� 
os (129)where� = Izz � IxxIzz (130)Remark (V)1. If one expresses the answer in terms of L | angular momentum, the result is 
 = LIx . What is 
alled by theangular velo
ity of pre
ession | is the angular velo
ity of rotation of the axis of the 
urrent angular velo
ity aroundthe �xed dire
tion in spa
e along the angular momentum (whi
h remains the same) in the inertial 
oordinate system(relative to the stars). The pre
ession in this sense is slow when Ix � Iz (rod) and is approximately the same as the
urrent angular speed of rotation for a sphere-like obje
t Ix � Iz.2. By guess, in the problem they ask about estimation of some other quantity (what is 
onfusing with 
ommonde�nition) | the angular velo
ity of rotation of the axis of the 
urrent angular velo
ity around the �xed dire
tionatta
hed to the Earth, that is | in rotating 
oordinate system of the Earth. From 
onservation of the angularmomentum L written in the rotating x; y; z-
oordinate system atta
hed to the Earth we have_L+ ! � L = 0 (131)14



where ! is the 
urrent angular velo
ity (as physi
al obje
t it is de�ned with respe
t to the 
oordinate system ofstars, and by de�nition it is the angular velo
ity of rotating x; y; z-frame), but expanded in the x; y; z-Earth 
onne
ted
oordinate system. That results_!x = Iy � IzIx !y!z; _!y = Iz � IxIy !z!x; _!z = Ix � IyIz !x!y; (132)For O(2) symmetri
al body we have Ix = Iy, and thus !z(t) = 
onst � !z0 and the remaining equations be
ome linear�!x + ("!z0)2!x = 0 (133)with the harmoni
 solution having frequen
y ~
 = "!z0, whi
h des
ribes slow rotating of the 
urrent axis of angularspeed around the z-axis dire
tion (whi
h is atta
hed to the Earth!, and whi
h is itself rotates with approximately1-day period around the �xed dire
tion of the angular momentum relative to the stars!!).1.22 m/m01m1 Ta). 0 = dF = dx�g + T (x+ dx)� T (x) (134)Thus �T�x = ��g (135)But T (x) = KL(�S�x � 1) (136)Result:S00 = � �gKL (137)Or S(x) = a+ bx+ 
x2=2 (138)From the equation we have 
 = � �gKL . Sin
e S(0) = 0 a = 0. We also know that T (L) = 0 and thusb� �gK � 1 = 0 (139)FinallyS0(x) = x+ �gK [x+ x22L ℄ (140)b).The wave equation (as usual) has formS00 � v2 �S = 0 (141)where v2 = KL� . The general solution isS(x; t) = f(x � vt) + g(x+ vt) (142)At the moment t = 0 S(x; 0) = S0(x). Hen
ef(x) + g(x) = S0(x) (143)(here x > 0). Also at the moment t = 0 velo
ity is equal to zero:f 0(x)� g0(x) = 0 (144)15



for x > 0. Result: for x > 0f(x) = g0(x) = 12S0(x) (145)The last job is to determine f(x) for x < 0. Using that S(0; t) = 0 for any t we 
an de�ne f(x) for negative x asf(x) = �g(�x) = �12S0(jxj); x < 0 (146)Now f(x) is a smooth fun
tion.1.23 m/m01m2 TWhen parti
le 
ross the point x = 0 with very small energy time in
reases logarithmi
ally. If the energy of parti
leis E then using energy 
onservation low (it is violated only very slightly and during one period we 
an use it without
hanging E)E = m _x22 � ax2 + bx4: (147)For small x_x = 2mpE + ax2 (148)and time of 
rossing isT (x0) = Z x00 dy_x(y) � 2mpa logE (149)Sin
e after E < 0 the period redu
es twi
e be
ause the path redu
es twi
e we approximately haveE(i) � (i0 � i)� (150)for i < i0 andE(i) � 12(i � i0)� (151)for i > i0.Thus for i < i0T � 2mpa log(i � i0) + 
onst (152)and T � 1mpa log(i � i0) + 
onst (153)for i > i01.24 m/m01m3 TWe will solve part b. and then will get result for a. substituting � = 0. Let us introdu
e variable z = y + ix. Thenthe equation of motion will be�z + (� � i qBm ) _z = g (154)Initial 
onditions z(t = 0) = 0 and _z(t = 0) = 0. The solution isz(t) = imgqB + im� t+ m2g(qB + im�)2 [1� e(i qBm ��)t℄ (155)16



and _z(t) = imgqB + im� [1� e(i qBm ��)t℄ (156)a). � = 0 This motion is the simultaneous 
ir
ling and shifting.b). In the 
ase � 6= 0 radius of 
ir
ling de
reases and the motion be
ame shifting with �nal velo
ity imgqB+im� .
). The drag from b. 
hanges the value and dire
tion of shifting. In the 
ase of radiation the dire
tion and velo
ityof shifting 
oin
ide with the results from a. The �nal velo
ity is just the velo
ity of shifting.To get this result we add the term �q d3zdt3 (�-some real number)to the equation of motion. Then the velo
itydepends on the time as_z(t) = � imgqB + v0[1� e
t℄ (157)We have no idea to spe
ify v0. More interesting to �nd 

 = 1�q1� 4�q( iqBm )2�q (158)When � = 0 we return to the a. 
ase. When � 6= 0 we would like to note that<
 < 0 (159)Thus velo
ity (and radius of 
ir
ling de
reases in time). The imaginary part is di�erent from a. 
ase- the frequen
yof 
ir
ling is not the same as without drag.1.25 m/m02m1 Ta).z = r 
ot�L = m2 [ _r2sin2 � + r2 _�2℄�mgr 
ot� (160)Equation of motionmr2 _� =M = 
onst (161)and msin2� �r = �mg 
ot�+ M2mr3 (162)b).If �r = 0 thenw2 = gz0 
ot2� (163)
).Expanding we have 
2 = 3w2 sin�1.26 m/m02m2 Ta). Let � be ml The Lagrangian isL = 12 Z L0 dtdx[� _y2 � �y02 +M _y2(x; t)Æ(x� L=2)℄ (164)Equation of motion is� _y(x; t)� �y00(x; t) +M �y(L=2)Æ(x� L=2) = 0 (165)17



This equation 
ould be separated for two�y � v2y00 = 0 (166)where v2 = �� for x 6= L=2 andM �y(L=2; t) = � [y0(l=2 + 0; t)� y0(l=2� 0; t)℄ (167)Boundary 
onditions for x = 0 and x = L: y = 0.We would like also to note that frequen
y (and thus wavelangth) to the left of mass and to the right of mass shouldbe the same for y(x) be smooth for any moment t in the 
enter x = L=2.Anzat
: (w2(k) = v2k2) for x < L=2y = Ak sin(w(k)t + �) sin(kx) (168)for x > L=2y = Ak sin(w(k)t + �) sin(k(L � x)) (169)Now we preserve smoothness of y(x). But there is also ex
eption when y(L=2) = 0 for any t:k = 2�nL (170)Then y 
ould bey = Ak sin(w(k)t + �) sin(kx) (171)for x < L=2 andy = �Ak sin(w(k)t + �) sin(kx) (172)for x > L=2Even in this 
ase dependen
e on time (and n) from both sides should 
oin
ides to satisfy equation for M �y = :::Now the equation of motion for mass M yieldsMw2 sin(kL2 ) = 2�k 
os(kL2 ) (173)Let us denote kL2 as �. Then equation istan � = m�M (174)In the ex
eptional 
ase (k through n) the equation for massM already satis�ed. This is just stati
 wave with knotin the point L=2.b). We did this. But ex
ept this there are su
h a solutions when M =1.
). At M = 0 we have equation tg� = infty and k = (2n+1)�LPlus ex
eption k = (2n�LAt M =1 we have equation tg� = 0 and k = 2n�L This is the same wavelength as ex
eptional mode has (it shouldbe added in the 
ase M = 1) but the amplitudes Ak in the RHS and LHS of the string has the same or oppositevalue 
orrespondingly.d). The �rst for frequen
ies (starting from M = 1): two symmetri
 and two antisymmetri
 relatively 
enter(x = L=2). Thus for ea
h mode in the LHS we have two modes for system at all. Two modes in the LHSy = sin(w(n)t+ �) sin(2�nxL ) (175)and n = 1; 2. 18



When M 
hanging from 1 to 0 antisymmetri
 doesn't 
hange! The symmetri
 modes are " sliding along tghgraph" (see equation derived before). Their momentum k in
rease and for �nite M they looks like:n = 1-ba
k of two-humped 
amel. Ea
h hump in
rease and be
ame from part of sin from 0 to � into part of sinfrom 0 to 32�The same happens with n = 2. But for M 6= 1 the symmetri
 mode is not fourth any more- the zero mode atM = 1 (just 
onstant mode) start " sliding along tgh graph" and goes to "one-hamped 
amel". Ea
h side of humpin the end of the story (M = 0) be
ame to sin from 0 to �=2.1.27 m/m02m3 Ta). _v = g � kmv2 (176)Solutionv =rmgk tanhrkgm t (177)b). _u = 
os�wv (178)Solutionu = 
os�mwk log 
oshrkgm t (179)
). v !rmgk (180)u! wtrmgk 
os� (181)1.28 m/m02j1 TLet us the distan
e between the y = 0 plane and mass M be h. And the angle between the horizontal line and sti
kof length 2
 be �. Then the 
onstraint for this system isb2 = (a � 
 
os �)2 + (h+ 
 sin�)2 (182)Potential energy of this system isU = �2Mg[h+ 
 sin�℄ (183)Equilibrium point is dU = 0 or (using 
onstraint)
os �0 = a
 (184)h0 + 
 sin�0 = b (185)and alsod�dh (h0) = �1a (186)19



Now se
ond derivative of U with respe
t to h at the equilibrium point:U 00 = �2Mg[ad2�dh2 � 
a2 sin�0℄ (187)Let us �nd d�2dh2 . Using 
onstraint one 
ould simply get0 = (1 + 
 sin�)2 + (
 
os �d�dh )0(
 sin�� a) + (x+ 
 sin�)[
 
os�d2�dh2 � 
 sin��d�dh�2℄ + (
 
os �d�dh )2 (188)At the equilibrium point this yieldsd2�dh2 (h0) = h0
a3b sin�0 (189)EventuallyU 00 = 2Mg
[b� h0℄ba2 (190)Now we will �nd the kineti
 term. Horizontal speed of mass M=2 parti
les is 2 _h sin�0 
a . Horizontal speed of massM parti
le is zero.Verti
al speed of mass M=2 parti
les is _h[1 + 2
 
os�0a ℄ = � _h. Verti
al speed of mass M parti
les is _h.Kineti
 energy is T =M _h2[1 + 2 
2a2 sin2 �0℄. The square of the frequen
y isw2 = 2g
[b� h0℄b[a2 + 2(b� h0)2℄ (191)Now using that (b� h0)2 = 
2 � a2 we havew2 = 2g
p
2 � a2b(2
2 � a2) (192)1.29 m/m02j2 TLet us remind the relevant formulas for parti
le orbiting the 
entral attra
tive for
e � 1r2 .1. Angular momentum L = mr2 _� is 
onserved.2. If the potential energy is given by ��r and total energy is equal to �E, E > 0 then the parti
le orbits the 
urver(�) = p1 + � 
os(�) (193)wherep = L2�m (194)and �2 = 1� 2L2Em�2 (195)Now if the energy less then zero the orbiting is �nite. Otherwise it is in�nite.Let us denote the velo
ity of satellite just before "
ollision" with Mars v and the velo
ity of Mars was V =p �mb .After "
ollision" the velo
ity of parti
le is �!u = 2�!V � �!v .The energy after the "
ollision" isE = mu22 � �b = mv22 + �b � 2m�!v �!V (196)If before the intera
tion velo
ity of the satellite and Mars was dire
ted opposite to ea
h other E > 0 and satellite willgo to spa
e in�nity. 20



To dis
uss the 
ase of general dire
tions we will need useful formulasE = �a+ b (197)and L2 = 2abm�a + b (198)Then the energy after 
olliding (in assumption that �!V and �!v were parallel to ea
h other) isE = ��b [ aa+ b + 1� 2r 2aa + b ℄ (199)This energy 
ould be negative. And the square of angilar moment isL2 = 4�mb[1�r a2(a+ b) ℄2 (200)Eventually the largest distan
e is4p1� � �1�r a2(a+ b)�2 (201)where� =s1� 8[2r 2aa+ b � 1� 1a+ b ℄�1�r a2(a + b)�2 (202)1.30 m/m02j3 Ta).T = kÆx = kl Æll . Now Æll should be substituted by ÆLL . Eventually we have klL .b).T (x) = kl( dsdx � 1) (203)and ml g = �dTdx (204)Solving this with boundary 
onditions: s(0) = 0 and T (l) =Mg we haveS0(x) = (1 + (m+M )gkl )x� mgx22kl2 (205)and S0(l) = l + (m+2M)g2k . 
). Now it is useful to introdu
e new variable D(x; t) = S(x; t)� S0(x). Wave equation forD(x; t) 
ontains lq km as the speed of waves. Plus boundary 
onditions D(t; 0) = 0 and M �D(t; l) = �klD0(t; l).Using �rst 
onstraint we 
onstru
t our solution in the formeiwt sin(px) (206)Then the other 
onstraint yieldstan(pl) = mMpl (207)and also w = plq km d). M = 0 yields p = �2l . "A half of the wave".m = 0 naively yields p = 0-no os
illations at all. But this is too naive. We will present 
orre
t answer after theintermediate 
ase m << M .In the 
ase m << M we 
an expand tan and get p = 1lpmM (here we are interested in the low frequen
y). As wasexpe
ted in this 
ase w =q kM . The last step is to normalize D(x; t) in the way that amplitude of the os
illations ofthe mass M be
ome �nite. OrD(x; t) = eip kM txl (208)Now we 
an simply take the limit m = 0 and get the usual result for pendulum handing on the massless string .21



1.31 m/m03m1 Ta). Third Newtons low for orbit of radius r > Rmw2r = mMsGr2 + mMeG(r �R)2 (209)where w is the frequen
y of Earth w2 = MsGR3 . This equation 
ould be rewritten in the way r = �R1 = 1�3 + MeMs�(� � 1)2 (210)Obviously it has one solution for xi > 1. Really starting at � =1 and when going to � = 1 RHS in
reases from 0 toin�nity. Thus it 
rosses 1 at expli
itly one value of x.b). Taking MeMs = � as a small parameter we understand that xi should goes to 1 when � goes to 1. Or, in otherwords, when � is �nite (approximately 1) quantity � � 1 is small. We would like to rewrite the previous equation inthe form� = (x� 1)3(x2 + x+ 1)x2 (211)A

ording to the previous spe
ulations we 
ould �nd the answer in the leading order by treating � = 1 and lookingfor (� � 1):� = 1 + � �3�1=3 (212)Numeri
ally (if � = �) � = 1 + 10�2 and (r �R) = 1106km.
).Using angular momentum 
onservation we 
ould �nd square of angular frequen
y of small os
illations
2 = 3w2 � 2[MsGr3 + MsG(r � R)3 ℄ (213)We are interesting whether 
2 > 0 or not. Rewriting this we will get3� 2�3 � 2�(� � 1)3 (214)Using our equation for � through � we 
an reexpressed the result only through xi (equivalent inequality)3� 2[1 + ��1 + ��2 + ��3℄ > 0 (215)Thus we have that orbiting is stable for large xi (when parti
le is far from the Earth) and unstable otherwise. Theinfernal point is when�4 � 3�2 + 2 = 0 (216)In our 
ase, when � = 1 + � �3�1=3 we have3� 2[1 + ��1 + ��2 + ��3℄ = �5 + O(�1=3) < 0 (217)The orbit is unstable.1.32 m/m03m2 Ta). Se
ond Newton's lowM ��!R = m�!g sin � +�!f (218)(our �!g has the value of usual g but dire
ted "downhill" )and the same low for angular momentumI _w = a[�!n � �!f ℄ (219)22



with without slipping 
onstraintddt _R = ddta[�!w � �!n ℄ (220)yield �!f [1 + Ma2I ℄ = �m�!g sin � (221)Hen
e e�e
tive for
e (RHS in the Newton's low) ism�!g sin �[1� 11 + Ma2I ℄ = 57�!g sin � (222)in the 
ase I = 25Ma2b). On
e again se
ond Newton's lowM ��!R = �!f (223)plus low for angular momentumI _w = a[�!n � �!f ℄ (224)plus without slipping 
ondition_R = a[�!w ��!n ℄ + [�!
 ��!R ℄ (225)(R = 0-
enter of rotation) yield�!f = M [�!
 � _�!R ℄1 + Ma2I (226)and �R� [
� _R℄1 + Ma2I = 0 (227)Let us denote � as� = 1 + Ma2I = 27 (228)Then introdu
ing 
omplex 
artesian 
oordinates on the plane r = x+ iy and v = _x+ i _y the equation be
ame�v + (�
)2v = 0 (229)with solution -linear superposition ofAei�
t +Be�i�
t (230)Obviously this is orbiting (arbitrary point as 
enter) with frequen
y�
 (231)
23



1.33 m/m03m3 Ta). We will assign the gas su
h quantities as �eld of pressure, �eld of density and �eld of velo
ity. We also assumethat our pro
ess is adiabati
, orP��
 = 
onst (232)Let us 
onsider small (pointlike) volume of air. Its a

eleration _v (as a hole obje
t is)_v = �P��x (233)We 
an also 
onne
t velo
ity of air with gradient of density using 
onservation of mass equationd�dt + grad(�v) = 0 (234)More 
onvenient for us form of this equation is���t + �grad(v) = 0 (235)After all we have�log� + �(��1�P ) (236)Using �rst equation one will have (� = �
�1)�log�+ 
P0��
0 �� = 0 (237)Expanding around � = rho0 one will get usual wave equation withv2s = 
P0�0 (238)b). Obviously at the boundary velo
ity should never be nonzero (va
uum 
an not appear and parti
les 
an notpenetrate through the wall). Thus �P = 0 at the boundary.Eigenmodes areÆ� = Anx;ny;nz�0e�iw(n)t 
os(x�nxL ) 
os(y�nyL ) 
os(z�nzL ) (239)Here w2(n) = v2s�2n2L2We should note that wave equation is the 
onsequen
e of all equation we wrote. But there is also additional
ondition: number of parti
les should not 
hange with time, orZ d3xÆ� = 0 (240)This 
ondition kills only the mode with w = 0 (without spatial dependen
e).
). If the pressure in the 
ube is P (t) then density there is P1=
P1=
0 �0 and amount of gas (mass) whi
h has to leavethe 
ube is (in linear in ÆP approximation)Æm = �L3�0ÆP
P0 (241)This mass has volume (inside the tube) equal toSx�0 = Æm (242)Here x is a length of the tube of air from 
ube. We should not worry about negative x- we 
ould add to this volumearbitrary volume from tube to make it positive. Now �x = �L3 �ÆPS
P0 . But from the Newtons lowm�x = S(P � Patm) (243)24



Here m = �0Sl-full mass of air inside the tube and Patm is the pressure outside the tube. We will introdu
e now newvariable p(t) = P (t)� Patm. Then equation of motion is�p+
2p = 0 (244)and 
2 = v2sSL3l (245)2 Ele
trodynami
s2.1 e/e98j1 VFrom the equations of ele
trodynami
s in mediarD = 4�� (246)rB = 0 (247)r�H = 1
 (4�j+ _D) (248)r� E = �1
 _B (249)D = "E (250)B = �H (251)j = �E (252)for the 
ase of the plane wave of the form E(r; t) = Eeikr�i!t;H(r; t) = Heikr�i!t, unit magneti
 permeability � = 1and zero external sour
es � = 0 we getkD = 0 (253)kB = 0 (254)ik �H = 1
 (�i!"E + 4��E) (255)ik �E = �1
 (�i!H) (256)and the immediate 
onsequen
ek2 = !2
2 �" + i4��! � � n2!2
2 ; n =r" + i4��! : (257)For given numbers one 
omputesk =p1=3e102 � (2:5e92 � 50 + i � 4 � pi � 2e10 � 2:5e9) = 0:75 + 0:46i (258)and l = 2:2
m.2.2 e/e98j2 VSee problem e00j3 for derivation of the intensity of radiation of an a

elerating 
harge. The 
ondition ! � 
l impliesthat the size of radiating system is mu
h less than the wave length, therefore the approximation e00j3 is valid:Ie = 23
3 �d2 = 23
3 (�l12!2l)2 (259)The magneti
 dipole moment is suppressed by the ration v=
, therefore the intensity of its radiation will beIm / Ie�!l
 �2 (260)25



2.3 e/e98j3 VJust near the surfa
eE = E0 + 1R3 (3jpj 
os ��!n � �!p ) (261)Sin
e inside E = 0 we obtain 
harge density� = E0 34� 
os � (262)and the �eld whi
h a
ts on a 
harge but not 
reated by this 
harge isEext = E032 
os � (263)Therefore the for
eF = Z 2�d 
os � 
os �E0 32 
os �E0 34� 
os � = 3E20R2 (264)2.4 e/e98m1 VFromA� = 1
 j�(t � r=
)r (265)integrating the 
urrent in the limits �p(t
)2 � x2 we getAz = �
 "t log p(t
)2 � x2 + t
�p(t
)2 � x2 + t
 � 2
p(t
)2 � x2# (266)and H� = ��rAz = � 2�
2xp(t
)2 � x2 (267)and Ez = ��tAz = ��
 log p(t
)2 � x2 + t
�p(t
)2 � x2 + t
 (268)The limiting 
ases are read from the expressions above in an evident way.2.5 e/e98m2 VSin
e the magnet will attra
t 'magneti
 
harges' to the boundary of the media with in�nite magneti
 permeability insu
h a way to 
an
el the magneti
 �eld, they will 
reate the �eld 2��, in this �eld the 
harge �A is lo
ated, thereforethe for
eF = 2���A (269)(in the problemM is given. It is �).
26



2.6 e/e98m3 Va. The �eld of dipole isH = (�!p �!r )�!r ��!p r2r5 (270)From the �eld at the equator, negle
ting � = 110, we getp = HR3 = 0:5 � (6:4 � 108)3 = 0:13 � 1027 gauss units (271)b. See e00j3 for radiation of a

elerating 
harge.P = 23 �p2
3 = 23 (p!2 sin �)2
3 = 350 gauss units = 3:5 � 10�5Wt (272)
. In plasma the dispersion relation for the plane wave isn =r1� 4�nq2m!2 (273)(it is immediate sequen
e of Maxwell equations together with a
tion of �eld on the 
harges with the plane wave anzatz)!
 =r4�nq2m � 4 � 103Hz (274)Sin
e !earth � !
rit the refra
tion index is purely imaginary, and the 
hara
teristi
 length of damping of the signalis l = 
!
rit � 7 � 102km, that is enormously less than spa
e s
ales in the solar system. Therefore, the signal isundete
table.2.7 e/e99j1 Va. The for
e on dipole is�!F = (�!p �!r)�!E = �(�!E�!r)�!E (275)If E(x; t) = e(x) 
os(!t + �(x)), thenD�!F E = �2 (�!e �!r)�!e (276)The for
e is dire
ted towards region with stronger �eld.b. For the wave in 
omplex notations , when Ex = <eikx�i!t and Ey = Im eikx�i!t imaginary part in thepolarization will e�e
tively mean, that the p = �E is dire
ted not along E but at an angle tan � = a0a00 , then there isnon zero for
e a
ting on this rotation dipole from the magneti
 �eld B. Therefore,F = !
 �00jEj2 (277)
. Fromm�x+ 
m _x +m!20x = qE (278)for E = Eei!t one getsx = qEm 1!20 � !2 + i
! (279)the real part�0 = qm !20 � !2(!20 � !2)2 + 
2!2 (280)has maximum at! =q!20 � 
!0 (281)27



2.8 e/e99j2 VStress energy tensor T = �2 ÆSÆg from the lagrangian L = � 116�F��F�� isT �� = 14� ��F ��F �� + 14g��FlmF lm� (282)It's spa
e 
omponents are the 
ow of momentum (3x3 pressure-tension tensor):��� = 14� ��E�E� �H�H� + 12Æ��(E2 +H2)� (283)Due to the interferen
e between the external �eld and the �eld from the 
harge there is 
ow of momentum throw thespheri
al surfa
e separating the 
hargeF� = ZS2 ���dn� = 14� Z dn��(�(p� + n�)(p� + n�) + 12Æ��2(pn))� = qpa (284)where the integral is taken over S2 around the 
harge, with pa = Eexta and na = Eqa. Therefore, the momentum 
owsaway from the 
harge in a

ordan
e to the for
e a
ting on it.2.9 e/e99j3 VDue to rotation the star looses energy with powerddt �J!22 � = �P = �23 �2!4
3 (285)from J! _! = �P and _T = � 2�!2 _! we get� =s32 _TT4�2 
3J; (286)where J = 25mR2, and sin
e Bmax = 2 �R3 we getBmax =s 35�2 _TTm
3R4 = 0:16 � 1016gauss (287)And EQED
rit = m2
3e�h = 0:5 � 1014 (288)thus Bmax is stronger in � 30 times.2.10 e/e99m1 VSin
e the sphere 
ontains 
harge,due to rotation it has the magneti
 moment. For the 
lassi
al sphere the relation is� = Q2M
L (289)where L is the me
hani
al momentum. In the magneti
 �eld the sphere pre
essJ _! = [�! � B℄ (290)with the frequen
y 
 = �BJ = QBJ!2m
J = QM !B2
 , whi
h leads toQM = 4�2
2!B� (291)The polarization of this dipole radiation is 
ir
ular. 28



2.11 e/e99m2 VLet the radius of the wheel is �. The resistan
e of a separate spike is r = ��, of a separate segment on a 
ir
le isR = ��2�5 . The resistan
e between the 
enter and the ending of one of spike isreff = r + r=4 + 2R = 54r + 12R (292)When the spike passes the magneti
 �eld, it 
reates indu
ed ele
tri
al �eld, whi
h 
auses 
urrent, whi
h dissipates.U = � _� = 12!B�2 (293)The rate of loosing of the kineti
 energy isddt J!22 = U2reff = (12B�2)2 1reff !2 (294)therefore the 
hange of velo
ity due to passing through the wedge of one of the spikes is!(t) = !(0)e� (B�2)24Jreff t (295)Sin
e there is no pi
ture, not loosing generality, let us assume that the angle of the wedge � is less than 2�5The angle depends on time like�i(t) = �0i !i� (1� e��t); (296)where � = (B�2)24Jreff . If �(1) less then than the angle of the wedge, the wheel will stop, having still the same spike inthe magneti
 �eld. If it is greater, the wheel will leave with this spike the region of magneti
 �eld with the angularvelo
ity !i+1!i+1 = !i � �� (297)Then it will rotate freely until the next spike enter the magneti
 �eld, an the pro
ess of slowing down will repeat withthe same fun
tional form as (295).2.12 e/e99m3 VBy de�nition of the ele
tri
 permittivity the following relation holds for a 
at layer in the perpendi
ular ele
tri
 �eldEtot = Eext + Epol (298)Epol = �4��Etot; ) Etot = Eext1 + 4��; Etot = Eext" ; " = 1 + 4�� (299)Then, �Etot has a sense of the spe
i�
 ele
tri
 dipole moment per volume. In the 2D pi
ture this distributed ele
tri
dipole moment 
reates homogenous �eld, and therefore the problem is solved exa
tly (symmetry of the disk and Gausstheorem is exploited).Epol = � �2�4��Etot = �2��Etot (300)and therefore, inside the diskEtot = 11 + 2��Eext = 21 + "Eext (301)Outside the disk the �eld is the superposition of the dipole �eld and the external �eld�!E = �!E ext + �!E dip = �!E ext + 3(�!p �!r )�!r � �!p �!rr5 (302)where�!p = �R2 " � 14� 21 + "�!E ext = 12 " � 1" + 1�!E ext (303)29



2.13 e/e00j1 VOne 
an solve the Lapla
e equation with the given boundary 
onditions on the 
ir
les in 2D, using the methods of
onformal mappings, or one 
an just note, that two opposite 
harges with 2D logarithmi
 potential have 
ir
les asthe 
urves of 
onstant potential. Let the potential on the left 
ir
le be ��0, on the right �0 and we will 
hoose su
h
harges and positions for them to 
reate su
h potential on given 
ir
les. Let �!p = (�p; 0) be position of the 
harges.�(r) = 2q(log j�!r ��!p j+ log j�!r +�!p j) (304)The equation of 
urve of 
onstant potential 
onst = � = e �2q isy2 + �x+ p�2 + 1�2 � 1�2 = p2 4�2(�2 � 1)2 (305)from whi
h the position of its 
enterb = p�2 + 1�2 � 1 (306)and its radius isR = p 2��2 � 1 ; (307)Solving for p; � in terms of R; b we getp2 = b2 � R2; � = 1R(pb2 �R2 + b) (308)and the 
apa
ity isC = q2�0 = 14 1log�pb2�R2+bR � (309)At large b it agrees with the naive estimation (if one negle
ts the displa
ement of the 
harges on one wire due tothe �eld of the other wire)Cnaive = 14 1log(2b�RR ) (310)2.14 e/e00j2 VThe gradient of magneti
 �eld 
auses the appearan
e of the 
ir
ular ele
tri
al �eld, whi
h 
ause the 
urrent, whi
h
reates magneti
 moment, whi
h intera
t with the the gradient of the magneti
 �eld and slows the 
ir
le.E = a2
�zBv; I = �b2�E = �2ab2�2
 v�zB; � = 1
 IS (311)m _v = F = ���zB = �3a2b2�2
2 (�zB)2v (312)The gradient �zB for the solenoid is obviously proportional to the �eld from the one, the nearest 
ir
ular loop�zB = n2�Ir
 r(r2 + z2)3=2 (313)where r is the radius of the solenoid and n is the density of loops. Rewriting the di�erential equation with respe
t toz from t with _v = v0v and integrating we get�(mv) = �3a2b2�2
2 �2�nIr2
 �2 Z 10 dx(x2 + r2)3 = �3a2b2�2
2 �2�nIr2
 �2 1r5 3�16 (314)30



2.15 e/e00j3 VFrom the Lagrangian� 116�
F��F �� � 1
2A�j� (315)follows the equation of motion��F �� = 4�
 j� ; (316)whi
h in the Lorentz gauge ��A� = 0 yields (�2t � �2r )Ai = 4�
 ji with the solutionAi(t; y) = 1
 Z j(t � jy � xj=
; x)jy � xj d3x (317)Further than in the wavelength region the wave 
an be 
onsidered to be plane with�!H = [�!n � _�!j ℄
2R (318)and E = 1
 [�!H � �!n ℄, and the energy 
ow �!P = 
4�H2�!n . At some point there are two 
ontributions to the total �eldfrom two di�erent sour
es. They are averaged over the time with 
[
os(!t) + 
os(!t+ �)℄2� = 1 + 
os(�) The phaseshift is 
ontributed from di�erent phase sour
e supply and from di�erent path of propagation � = �+ !�
 sin� sin�,where � = � in the 
urrent problem. Thus, the answer isdPd
 = 14�
3 sin2 �!2I2�d2�2�1 + 
os(�+ !�
 sin � sin�)� (319)2.16 e/e00m1 VAs in e98j1 we getk =r!2"
2 + i!4��
2 (320)when 4��"! � 1 we getk = pir4��!
2 (321)by boundary 
onditions we get that at the surfa
e y; z with the wave going in the plane y; xky0 = ky1 (322)and k2xi = k2x0 + k20(n2i � 1) (323)then, sin
e transversal 
omponent of B and E is 
ontinuous we getr = ����nlx � nrxnlx + nrx ����2 ; (324)where nTEx = kxk0 for transversely polarized ele
tri
 wave, and nTMx = kxn2k0 for transversely polarized magneti
 wave.By Kir
hho�'s lawt = 1� r; (325)Then, in the limit A = 4��"! !1 we gettTE = 2p2
os �pA ; (326)tTM = 2p2 1
os �pA; (327)Thus, at � ! �=2, the polarization be
ome transversely magneti
.31



2.17 e/e00m2 Va. Sin
e there is image 
harge inside the plane,m�x = � q2(2x)2 (328)and integrating equations of motionT =s2mx30q2 Z 10 dtp1� 1=t (329)b. Radiated powerP = 23 (q�x)2
3 = 16 q6m2x4
3 (330)
. By pla
ing 
harges e0 at the opposite point and e00 at the same point, and using E1t = E2t; D1n = D2n we gete+ e0 = e00="; e � e0 = e00 (331)then, e0 = � "�1"+1 and the for
eF = �" � 1" + 1 q2(2x)2 (332)2.18 e/e00m3 Va. From Om's equationsV0 = �L11 _I1 � L12 _I2 (333)RI2 = �L12 _I2 � L22 _I2 (334)we getI2 = V0�i!�L12 � L22L11L12�+RL11L12��1 (335)and the dissipated power ishP i = 12 jI2j2R (336)b. From de�nition of indu
tan
es �i = LijIj and simple expression for magneti
 �eld in the solenoid we getB1 = �0N1I1L (337)and L11 = �0N1N1S1L ; (338)L21 = �0N1N2S2L : (339)Analogously,B2 = �0N2I2L (340)L12 = �0N1N2S2L ; (341)L22 = �0N2N2S2L : (342)32



2.19 e/e01j1 VBy 
onformal map of the unit disk to the half planew(z) = z � 1z + 1 (343)we get that distan
e between 
uts will bed0 = 2R tan �2 (344)where 2� is the angle between them on the disk, and the size of 
uts will beÆ0 = Æ(tan �2 )0 = 12Æ 1
os2 �2 (345)At the plane we �nd that the resistan
e isR = �UI = 2EÆ0Æ0 log d0Æ0�Æ0�aEÆ0 = 2log d0Æ0��a = 2��a log dÆ (346)2.20 e/e01j2 VSin
e dpdt ����r = !p = qvB
 (347)we getp = qRB
 (348)Sin
e dpdt ����tan = qE; (349)and E = 12�R 1
�R2 _Bav = R2
 _Bav (350)we getBav = 2B (351)For ultra-relativisti
 ele
trons_p � _" (352)and 
q R2
 _Bav = _" = 23
3 q2w2 = 23
3 q2� !v1� v2�2 : (353)Thus,"max = m 3R3 _Bav4
q ! 14 (354)33



2.21 e/e01j3 VIn the media, where k(n) = k0n = !n
 ,~f(z; t) = Z d!ei(!0+b(!�!0) z
�!t)f! = Z d!ei(!0+b(!�!0) z
�!t) 12� Z e�i!xf(x) = f(bz
 � t) (355)where f(�) = R f!d!ei!�, and b
 = dkd! is just the inverse 'group speed'. In a

ordan
e to its name, the pulse propagatesin the media with the velo
ity vg = d!dk . After the media, the pulse is the same, shifted in time~faft(z; t) = f(z
 � t+ � ) (356)where � = (b�1)a
2.22 e/e01m1 Ta). E(r) = V0�0r (357)And energyE = d Z b+
b 12E2�0r = V 20 d2�0 log(1 + 
b ) (358)b). Di�eren
e in potential we denote as V0. Then E(r) = V0�0r . We also know that�(r) = 2�0E(r) (359)That is why the 
harge atone given plate isq = d Z b+
b dr�(r) = 2�0V0d�0 log(1 + 
b ) (360)The total 
harge is Q = Nq where N = 2�2�0 -number 
onne
ted plates.NowQ = CV0 = 2��0d�20 log(1 + 
b )V0 (361)Capa
ity isC = 2��0d�20 log(1 + 
b ) = 50�0d� log(1 + 
b ) (362)if there are 10 plates of any kind.2.23 e/e01m2 Ta). m�x = eE (363)Thus x = eEmw2 (364)P = nex (365)and D = E + 4�P = �E (366)34



� = 1� 4�ne2mw2�0 = k2w2 (367)Thus w2p = 4�ne2m�0 (368)b). It is smaller in approximately 2000 times due to mpme � 2000. 
).vph = wk = 
q1� w2pw2 (369)vgr = dwdk = 
r1� w2pw2 (370)and vgrvph = 
2, vgr < 
 < vphd). Ok.e).The equation to determine wp (and n through it) is�T = lw2p�w
w3 (371)eventuallyn = m�0�T
w34�e2l�w (372)2.24 e/e01m3 Ta). Ele
tri
 �eld is dire
ted along the radius. It is zero inside both 
ylinders. It is equal toE(r) = b�br�0 (373)inside the larger 
ylinder and toE(r) = b�b � a�ar�0 (374)outside both of them.b).a�a = b�b-total 
harge should be equal 0. 
). This system is equal to solenoid with total 
urrent I = �aalw and�eld H = �wbb�b (375)inside. d). With the same frequen
y w. e). The 
ux inside the 
ylinders is� = �(b2 � a2)H (376)Then E = _� = �(b2 � a2)�b�b _w (377)From the another sideE = 2�bE (378)And additional torque isM = 2�bl�bEb = ��(b2 � a2)lb2�2b _w (379)35



Now we see that this additional torque just shifts the moment of inertia of our system. f). At �rstx� �0E �H = �a�ab�bw (380)and dire
ted along axis of 
ylinders. ThenL = Z ba 2�rdrH = �a�ab�bw = Z dtM (381)This momentum 
orresponds to the integral of the torque.2.25 e/e02j1 Ta). v = 
p�� (382)Z = VI = V_Q (383)Sin
e Q = Q0eiwt�ikz thenZ = �ivC (384)where C is a usual 
apa
ity of the 
apa
itor of given shape.C = 2��log(b=a) (385)EB = 1p�� (386)b). Kirgo� ruleI0 + IR = IT (387)and (I0 � IR)Z1 = ITZ2 (388)Hen
eIR = I0Z1 � Z2Z1 + Z2 (389)and IT = I0 2Z1Z1 + Z2 (390)The same 
oeÆ
ients are applied for the ele
tri
 �eld. 
). On
e again:I1 + I2 = I0 (391)and I1 = I2. And alsoI0(Z � R) = I1(Z + R) (392)Thus R = Z3 (393)36



2.26 e/e02j2 TE = S _B
 = 2�RE (394)M = RE� = R2 _B�2
 = I _w (395)Finallyw = R�BT�2I
 (396)At the end of the storyB = 2�w
 (397)Now we have linear equation for w. Solving it we get a resultw = R�BT�2
[I + R2�2
2 ℄ (398)2.27 e/e02j3 TThing disk is equivalent to the plane 
ir
ular wire with 
urrent I = Mh in it. This at the z axis magneti
 �eld (alsodire
ted along z) has value a).B(z) = 2�a2Mh(a2 + z2)3=2 (399)b). The for
e a
ting on the sphere is�!F = (m � �)�!B = (� � 1)4�b33 B�zB = (1� �)2�b33 24�2a2M2h2z(a2 + z2)4 (400)This for
e should be equal to mg.2.28 e/e02m1 TIn the iron B = �H. In the gap ~B = ~H. From the low divB = 0 we have B = ~B or ~H = �H.Using 
ir
ulation theorem:NI = 2�RH + w ~H (401)or H = NI2�R+ �w (402)Energy of the �eld is (here S is the area of 
ross-se
tion )E = S2 [2�RBH +w ~H ~B℄ = S�2 N2I22�R+ �w (403)Obviously E de
reases when w in
reases. Thus b). try to widena). ~B = �NI2�R+�ww 
ould be taken w = 0 in the last formula 37



2.29 e/e02m2 TAt �rst it will useful to solve this problem for external �eldE = E0 (404)and for external �eldE = E0�!xa (405)The eventual result 
ould be obtained just using superposition rule.The following useful formulas for 2D will be used:�� log r = n�r (406)���� log r = Æ�� � n�n�r2 (407)and �����
 log r = 2r3 [2n�n�n
 � Æ��n
 � Æ�
n� � Æ
�n�℄ (408)In both 
ases we assume that ele
tri
 �eld inside the 
ylinder is dire
ted along x̂ (dire
tion of external �eld). Wedenote it as E(x). Then �eld on the boundary (outside the 
ylinder) isx̂[
os2 �(�� 1)E +E℄ + ŷ[
os� sin�E(�� 1)℄ (409)In the 
ase of homogeneous �eld E0: the �eld inside the 
ylinder should be homogeneous (to satisfy divD = 0).This �eld should be equal external �eld plus �eld of polarized 
ylinder. The possible �led of polarized 
ylinder aregiven above. In this 
ase we need ���� log r-this substitution 
ould solve the equation.x̂[
os2 �(�� 1)E +E℄ + ŷ[
os� sin�E(�� 1)℄ = x̂E0 + AR2 [x̂� 2x̂ 
os2 �� 2ŷ sin� 
os�℄ (410)Really we have two equation here (for x̂ and for ŷ) and to unknown variables (A and E). The solution isE = 2E01 + � (411)A = �12E(�� 1)R2 = �E0(�� 1)1 + � (412)Now we are ready to present the results:�eld outside the 
ylinderx̂E0 � E0(�� 1)R2(�+ 1)r2 [x̂� 2x̂ 
os2 �� 2ŷ sin� 
os�℄ (413)�eld inside the 
ylinderE = 2E01 + � (414)D inside the 
ylinder:D = �E = 2E0�1 + � (415)and P inside the 
ylinderP = (� � 1)E = 2E0 �� 1�+ 1 (416)Now we will 
onsider the 
ase of the �eld E0 xa . Then there are free 
harge � = E0a = divD. And thus D = E0 xa ,D = E0 xa=�. 38



On the boundaryx̂[
os3 �(�� 1)E0R�a + E0R 
os ��a ℄ + ŷ[
os2 � sin�E0R(�� 1)�a ℄ (417)This should be equal tox̂E0R 
os �a (418)plus �eld of polarized 
ylinder. We will use �����
 log rx̂�x̂
 and also �� log r and x̂�x̂��� log rThe eventual result for ele
tri
 �eld outside the 
ylinder isx̂E0R 
os �a �E0R2(1 � �)2�ar [x̂ 
os �+ŷ sin�℄�E0R4(1� �)2�ar3 [2 
os2 �fx̂ 
os�+ŷ sin�g�2x̂ 
os ��(x̂ 
os �+ŷ sin�)℄(419)Inside the 
ylinder ele
tri
 �eld isx̂E0xa� (420)D is x̂E0xa (421)and P isx̂E0x(�� 1)a� (422)2.30 e/e02m3 TThe density of protons is �0(r) = Iv�r20 .Let �(x) be the density of ele
trons. Then ele
tri
 �eld indu
ed by ele
tronsE(r) = 1r Z r0 d��(�)2�� (423)The magneti
 �eldE(r) = vr Z r0 d��(�)2�� (424)The ele
tri
 �eld indu
ed by positronsE(r) = 1r Z r0 d��02�� (425)In the point where � 6= 0 al for
es a
ting on the ele
tron should 
ompensate ea
h other:Ep = E � vB (426)or Z r0 d��02�� = (1� v2) Z r0 d��(�)2�� (427)Result is�(r) = 11� v2 �0 (428)From the other side we know thatZ r00 d��0(�)2�� = Z r00 d��(�)2�� (429)Thus �(r) = 11� v2 �0 = Iv�r20(1� v2) (430)only for r 2 [0; r0sqrt1� v2℄ and 0 otherwise.Voltage di�eren
e isZ r00 d��0�� � Z r�0 d��0��2�� = 0 (431)39



2.31 e/e03m1 Ta). Using thatA(r; t) = �I0 Z y�y dxpx2 + r2 �(
t � r) (432)where y2 + r2 = 
2t2 we 
an determined the potentialA(r; t) = �I02 log[
t+p
2t2 � r2
t�p
2t2 � r2 ℄�(
t� r) (433)Then jB(r; t)j = j�rAj = �I0
trp
2t2 � r2 �(
t � r) (434)The for
e (repealing) per unit length isF = �I20
trp
2t2 � r2 �(
t � r) (435)At the moment t = r=
 (the �rst moment e.m. wave rea
h se
ond wire the for
e is in�nite) be
ause we turn on the
urrent unsmoothly. b). Similarly to the previous 
ase (� = I0b , z2 + r2 = 
2(t� � )2)A(r; t) = �I0 Z z�z dxpx2 + r2 �(
(t � � )� r) + 2� Z yz dxb(t�px2 + r2=
)px2 + r2 (436)Then BB(r; t) = �br�(t� r=
)
(
t+p
2t2 � r2) + ��(t � � � r=
)p
2t2 � r2 [ brt
(t� � ) +p
2(t � � )2 � r2 � br
 � b�
(t� � )r ℄ (437)And for
e is F = I(t)B. Sin
e we turn on 
urrent smoothly the for
e is smooth as well.2.32 e/e03m2 Ta). If q = � aRQ and is lo
ated on the line between 
enter of the sphere and 
harge Q at the distan
e r = a2R from
enter of sphere towards 
harge then V on sphere is zero.b).By Newton's third low the for
e a
ting on the sphere is equal (abs. value) to the for
e a
ting on the 
harge Q.Condu
ting sphere with 
harge Q on it 
ould be substituted by the point 
harge Q lo
ate in the 
enter of the sphereand 
ondu
ting sphere without any 
harge. The last one 
ould be substituted by the 
harge spe
i�ed in a. Thus thefor
es areattra
tionkqQ(R� r)2 = akQ2R2 � a2 (438)repealingkQ2R2 (439)Result is the repealing for
ekQ2R2 [1� aR3(R2 � a2)2 ℄ (440)
). The ele
tri
al potential at the distan
e l from the 
enter of the sphere and at the angle � (� = 0 is a symmetryaxis) is'(l; �) = kQ[ 1l + 1pR2 + l2 � 2Ra 
os� � 1qa2 + R2a2 l2 � 2Ra 
os� ℄ (441)40



Thus ele
tri
al �eld on the surfa
e l = a isE = ��'�l = kQ[ 1a2 � a(R2 � a2)(R2 + a2 � 2Ra 
os�)3=2 ℄ (442)We know that density of the 
harge at the surfa
e of 
ondu
tor is � = E�0 where k = 14��0 Result�(�) = Q4� [ 1a2 � a(R2 � a2)(R2 + a2 � 2Ra 
os�)3=2 ℄ (443)Obviously negative 
harge will �rst appear at � = 0 when R = 3a.d). At zero approximation (only one sphere with potential V0 on it) the 
harge on the sphere is Q0 = 4��0aV0.Next approximation: we have one sphere very far from other and 
ould 
onsider it as a point 
harge of Q0 value. Thense
ond sphere has 
harge Q1 = Q0 � aRQ0 = Q0R�aR .e). At the next step we have to 
onsider on sphere as the point 
harge Q0 in it's 
enter and on
e more 
harge� aRQ0 at the distan
e a2R . Sin
e this distan
e is already quadrati
 in a we 
an negle
t it and repeat our spe
ulationsfrom d. substituting Q1 instead of Q0. Result isQ = Q0[1� aR + a2R2 ℄2.33 e/e03m3 TThe ve
tor, pointing 
harged parti
le (in the x-y plane) is�!r = � e�!Emw2 (444)By de�nition�!P = N�!d (445)where �!d is dipole moment of produ
ed of one (negatively) 
harged parti
le: �!d = e�!r Now�(w) = �0(1� e2N�0mw2 ) (446)and n(w) =s1� e2N�0mw2 (447)As well known speed of light in the medium is 
 = 1=n = wk ork2w2 = 1� e2N�0mw2 (448)Dispersion low isw(k) =sk2 + e2N�0m (449)Obviously the plasma frequen
y iswp =se2N�0m (450)b). Equation of motion (for 
omplex velo
ity ve
tor)_v + wLv = eEm (451)41



Solving this one getsr = � eE(z; t)w(w + iwL) + r0e�iwLt (452)Hen
e� = �0(1� e2N�0mw(w + iwL) + eNr0�0 ) (453)(As I understand phase of � is just the phase of r0)
). The minimal frequen
y should satisfy equation(1� e2N�0mw(w + iwL) + eNr0�0 ) = 0 (454)3 Quantum Me
hani
s3.1 q/q98j1 VIf the the hamiltonianH0 is perturbed by V then it is possible to �nd the expansion of the eigenstates jiiof H = H0+Vover eigenstates of H0, whi
h are denoted ��i0� and have energy E0i :jii =Xj 
ij ��j0� (455)(H0 + V )Xj 
ij ��j0� = EiXj 
ij ��j0� (456)In the zero order 
0ij = Æij . In the �rst order
1ij = Æij � VjiE0j � E0i (457)Thus the expe
tation value of the operator O in the state jsi ishsj O jsi = Oss �Xj OsjVjs +OjsVsjE0j �E00 + O(V 2) (458)where the matrix elements are meant to be taking over the states ��i0�. The ground state is doubly degenerate as wellas the �rst ex
ited state. However, in the sum the 
ontribution will be only from the diagonal term. Sin
e for theos
illatorxn;n�1 =r n�h2m! (459)we get the answer:h0j z�z j0i = � ��h! �hm! (460)for any of two ground states.
42



3.2 q/q98j2 VFrom � �h22m d2dx2 + aÆ(x) = E (461)it follows that the jump of the derivative at ea
h delta fun
tion is 0j+� = � (462)where � = 2m��h2 . The solution to be found in form Ae�kjxj; B sinh(kx+ f); Ce�kjxj for the regions to the left, betweenand to the right of the bands respe
tively. Gluing the logarithmi
 derivatives we get the system of trans
endentalequationsk � k 
oth(�kL + f) = � (463)�k � k 
oth(kL+ f) = � (464)from whi
h the solution for k and the ground state energy E = ��h2k22m 
an be found. In the limit L! 0 we havek 
oth f = � (465)Expanding 
othx near this point we getsinh2 f = kL (466)from whi
h follows the answerk = 2mLa�h2 (467)E = ��h2k22m (468)3.3 q/q98j3 VSin
e SeSp = 12((Se+Sp)2�S2e �S2p ) the eigenstates 
oin
ide with the eigenstates of the total momentumS = Se+Sp,whi
h 
an take value 0 or 1 with degenera
ies 1 and 3 respe
tively. The eigenvalues, respe
tively, are:12 �S(S + 1)� 32� = �34a�h2; 14a�h2 (469)The intera
tion of the magneti
 �eld with the spin12 parti
le is g2 e�h2m
�iBi, where is the gyromagneti
 ration (dimen-sionless number) and g = 2 for nonrelativisti
 ele
tron. Sin
e mp � me the intera
tion of it with the magneti
�eld 
ould be negle
ted in this problem. In the basis j0; 0i ; j1; 0i ; j1; 1i ; j1;�1i in the notation jJ;M i for the totalmomentum the hamiltonian takes the form1�hH = 0BBB� �34� 12� 0 012� 14� 0 00 0 14� 00 0 0 14� 1CCCA ; � = a�h; � = eB2m
 (470)and the evolution operator e�iHt�h restri
ted to the upper left blo
k, where is ground state, ise 14 it� "�i�1 �p�2 + �2 + i�3 �p�2 + �2# sin
t+ �0 
os
t! ; 
 = 12p�2 + �2 (471)and the probability to remain in the ground state isP = 1� �2�2 + �2 sin2
t (472)43



3.4 q/q98m1 Va) The ground state is jgi = jm1i jm2i with m1 = J1;m2 = �J2 to maximize S1z � S2z.S2 = (S1 + S2)2 = S21 + S22 + 2(S1zS2z + 12(S1+S2� + S1�S2+)) (473)Only �rst three terms 
ontribute into expe
tation value on the ground state, and thushgjS2 jgi = J1(J1 + 1) + J2(J2 + 1)� 2J1J2 (474)Using matrix elements of operatorshm+ 1jL+ jmi =p(l �m)(l +m + 1); hm � 1jL� jmi =p(l �m+ 1)(l +m) (475)it is easy to de
ompose the tensor produ
t of SU (2) spin J1; J2 representation into the dire
t sum of the irredu
ibleones (the adding of moments). The notations below are jJ;M i for the total momentum, and jm1i jm2i for separateproje
tions of the parti
le angular momentum on the quantization axis.b) For J1 = 1; J2 = 12 starting from the highest weight and a
ting 
onsequently by L� we get����32 ; 32� = j1i ����12� (476)����32 ; 12� = 1p3 �p2 j0i ����12�+ j1i �����12�� (477)����12 ; 12� = 1p3 �j0i ����12� �p2 j1i �����12�� (478)Reverting the expansion we getj1i �����12� = 1p3 �����32 ; 12��p2 ����12 ; 12�� (479)The out
omes are J(J + 1) = f154 ; 34g for J = 32 ; 12 
orrespondingly with the probabilities 13 ; 23 .3.5 q/q98m2 VUse the Born approximation to 
onsider s
attering on the potential V (r) = V0e�(r=a)2 .d� = 2�v�h Z d3k(2�)3 Æ(Ei �Ef ) ����Z d3xV (x)eiqx����2 (480)usingd3k = k2d
mdEk�h2 ; (481)and Z d3xV (r)eiqx = 2�q Z 10 rdrV (r) sin qr (482)andZ 10 rdre� r2a2 sin qr = p�4 a3qe� q2a24 (483)we getd�d
 = 2��hv 1(2�)3 k2m�h2 1k �V0 2�p�a34 e� q2a24 �2 (484)44



b) Integrating over angles is straightforward with q = 2k sin �2 and qdq = k2 sin ��theta and the result is� = 2��hv 1(2�)3 k2m�h2 1kV 20 �3a64 2�k2a2 �1� e� q2maxa22 � (485)with qmax = 2k� = �2V 20 a48v2�h2 (1 � e�2k2a2 ) (486)
) The approximation is valid when V0 � m�h2a2 or when V0 � m�h2a2 qa. Also the equation for d� is not justi�ed whenjqaj � 1 (see Landau-Lifshitz).3.6 q/q98m3 Va) From the perturbation theory we know that the se
ond order perturbation of the ground state is always negative:ÆE = �X jV0nj2En � E0 (487)whi
h means that the se
ond derivative over the parameter is negative (the �rst derivative is given by the �rst orderperturbation theory). If one wants to use hint it is also straightforward. Take point ~� and the ground state j�i, withground energy E(~�). Then, by sin
e the ground state should minimize the fun
tional h jH j i we getE(�) � D~����H1 + �H2 ���~�E = D~����H1 + ~�H2 ���~�E + (� � ~�)D~����H2 ���~�E = E(~�) + (� � ~�)D~����H2 ���~�E (488)ThereforeE(�)� E(~�) � (�� ~�)D~����H2 ���~�E = (� � ~�)E0(~�) (489)and this means 
on
avity.b)For a = 0 the matrix0B� 1 0 00 1 b0 b 1 1CA (490)The eigenvalues are f1; 1� bg. Take for example b > 0 the opposite 
ase is analogous. The ground energy is 1� b andthe ground state is (0; 1;�1). The �rst order perturbation is given by the matrix0B� 0 1 b1 0 0b 0 0 1CA (491)whi
h 
onvoluted with ground state gives zero. Thus, the �rst derivative is zero at a = 0. The se
ond will be alwaysnegative. Therefore the energy will de
rease as a in
reases.3.7 q/q99j1 VIn the non relativisti
 approximation there is no spin-spin or spin-orbital intera
tion. Therefore the wave fun
tion 
anbe written as a dire
t produ
t of the spin wave fun
tion by the 
oordinate wave fun
tion. Two spin 1=2 parti
les 
an
ombine either in the total momentum 0 state with the symmetri
al spin fun
tion or in the total momentum 1 statewith the antisymmetri
al spin fun
tion. Sin
e the total wave fun
tion should antisymmetri
al be
ause of grassmaniannature of the fermions, we obtain that the 
oordinate wave fun
tion should be symmetri
al for S = 0 state andantisymmetri
al for S = 1 state. The angular momentum in the ground state of the hydrogen mole
ule is zero. The
orresponding terms of the hydrogen mole
ule are denoted by 1�+g and 3�+u respe
tively.��1�+g � = �anti�� �sym(r1; r2) (492)45



��3�+u � = �sym�� �anti(r1; r2) (493)In ea
h 
ase, in the perturbation theory as a trial 
oordinate wave fun
tions we 
an use the symmetrized/antisymmetrizedprodu
ts of the wave fun
tions of the separate atoms. Denote protons by the letters A;B, and ele
trons by the numbers1; 2. H = K1 +K2 + UA(r1) + UB(r1) + UA(r2) + UB(r2) + U12(r1; r2) + Upp (494)where Ki = � �h22me�i is kineti
 energy, UA;B(ri) = � e2jri�rA;Bj is the intera
tion between the ele
trons and protons,U12 = e2jr1�r2j is the intera
tion between the ele
trons, and UAB = e2jrA�rBj is the intera
tion between the protons.The trial wave fun
tions are:j�i = 1p2(�A(r1)�B(r2) � �A(r2)�B(r1)) � 1p2(jABi � jBAi) (495)In the �rst order perturbation theory the di�eren
e between energies of the j�i states is given by the di�eren
e ofthe matrix elements h�jH j�i.b) Plugging the expressions for j�i to the Hamiltonian we get the di�eren
eÆE = h+jH j+i � h�jH j�i = hABj 4E + 2Upp jBAi + hBAjUBA + U12 jABi + hABjUAB + U12 jBAi ; (496)Sin
e it is 
omposed from the matrix elements of the wave fun
tions for the separate atoms the overlapping of themis proportional to e�RAB .
) and the mean energyEm = 12(h+jH j+i + h�jH j�i) = 2E + hABjUBA + U12 + Upp jABi + hBAjUAB + U12 + Upp jABi (497)where UAB = UA(r1) + UB(r2) and UBA = UB(r2) + UA(r1). The 
ross terms represent intera
tion between betweenatoms. In the dipole approximation the intera
tion energy is(d1RAB)(d2RAB)� d1d2R2ABR5AB (498)and therefore is proportional to d1d2=R3. But the average dipole moment vanishes. Therefore, only the se
ond orderperturbation gives nonvanishing result, that is Ueff (RAB) � R�6AB.3.8 q/q99j2 VIt is 
onvenient to represent the Hamiltonian in the following formH = 12((S1 + S2 + S3 + S4)2 � (S1 + S3)2 � (S2 + S4)2) = 12(J(J + 1) � J13(J13 + 1)� J24(J24 + 1)) (499)Then we 
an 
lassify all states by 
onsequent adding of momentums. First add in the pairs J13 = S1 + S3 andJ24 = S2 + S4 and then add the pairs.The result J13 � J24 !2J+1 jJi, where J is the total momentum and the degenera
y is 2J + 1.0� 0 =1 j0i H = 01� 0 =3 j1i H = 00� 1 =3 j1i H = 01� 1 =1 j0i ;3 j1i ;5 j2i H = �2;�1; 1.For any spin the ground state is obtained in the variant with spins added to the maximal one. So, it has angularmomentum 4J , the degenera
y 8J + 1, and the energy12(4J(4J + 1)� 4J(2J + 1)) (500)46



3.9 q/q99j3v VIn the limit V0 � �h2k22m the probability of transitionw = 2��h mj�hpj 12��h 2a "����Z a0 ei~px 12"0x sin kx����2 + ����Z a0 e�i~px 12"0x sinkx����2# ; (501)whereka = �; �V0 + �h2k22m + �h! = �h2p22m ; �h2k22m + �h! = �h2~p22m (502)and Z a0 ei~px sin kx = a~pk2 � ~p2 � 1(~p � k)2 (ei(�~p+k) � 1) = �a~p + O� 1~p2� (503)is 
omputed to bew = 2��h mj�hpj 12��h 2a 12"20 a2~p2 = "20a2�h!p2m(�h! � V0) (504)3.10 q/q99m1 VThe hamiltonian isH = �(�!S1�!S2 � 3S1zS2z) (505)where S are half-pauli matri
es and� = �h2e2m2
2L3 (506)The eigenstates arej++i ; j��i ; 1p2(j�+i + j+�i); 1p2(j+�i � j�+i) (507)with the eigen values �(�1=2;�1=2; 1; 0) respe
tively.a) The initial state j++i is eigenstate. Therefore it only a
quires the phase e� i�t�h j++i and the result of measuringS1z + S2z is always 1.b) The initial state is12(j+i1 + j�i1)(j+i2 + j�i2) = 12(j++i + j��i + j+�i + j�+i); (508)whi
h evolves to12(e i�t2�h j++i + e i�t2�h j��i + e� i�t�h j+�i + j�+i); (509)Proje
ting onto eigenve
tors of S1x + S2x we get that the out
ome with the result 1 is possible with the probability
os2(34 �t�h ) and the result with the out
ome �1 is possible with the probability sin2(34 �t�h )
) The 
lassi
al dipoles rotates smoothly with preserving the same dire
tion for the a)-
ase and rotating with itsproje
tion to the X-axis equal to the expe
tation value 
os(32 �t�h ) in the b) 
ase.47



3.11 q/q99m2 VThe ele
troni
 
on�guration of di�erent ele
trons is spe
i�ed approximately by showing whi
h orbit ea
h ele
trono

upies with notation like 1s2s or 1s2p. The total 
on�guration is given by spe
ifying the total S spin of the orbitaland the total L momentum of the orbital. They 
onserve separately in the "LS-approximation" but are perturbedby relativisti
 LS-intera
tion. The exa
tly 
onserved quantity is the total momentum J = L+ S. Given L and S theresulting J 
ould run from jL� Sj to L+ S, and for ea
h J the 
orresponding state is degenerated 2J + 1 times overthe dire
tions of J . The 
on�guration is displayed2S+1LJ (510)where instead of L = 0; 1; 2; 3 the letters S; P;D; F; :: are used.Two ele
trons 
an 
ombine into total spin S equal to 1 or to 0. The L is de�ned by the se
ond ele
tron, whi
h ins-state gives 0 and in p-state gives 1.The possible states in the problem are:1S0;3 S1 for the se
ond ele
tron in the 2s shell. 1P1;3P0;3P1;3P2 for the se
ond ele
tron in the 2p-shell. Thedegenera
ies are 2J + 1, whi
h gives respe
tively 1; 3; 3; 1; 3;5.The lowest energy should be S-state (L = 0). The total spin probably should be 1 than the spin wave fun
tionis symmetri
al and the spa
e-time wave fun
tion is antisymmetri
al whi
h de
rease the energy due to repulsions ofele
trons. The Hund rule states that the minimal energy of the states with the same ele
troni
 
on�gurations in termsof �ling n; l-shells has the term with:First S ! max, then L! maxWhi
h agrees with the proposal for the minimum energy of 3S1-state.May be the maximal energy will be of the term 1P1 for the same reason.The strongest de
ay pro
ess should be due to the ele
tri
 dipole radiation E1 from 2p shell to 1s shell: 1P1 !1 S0.The 3P0;1;2 state 
ould de
ay into 3S1 due to the E1 pro
ess. Just for the referen
e the probability isw = 4!33�h
3 jdfij2: (511)It seems, that the de
ays from 1S0 and 3S1 states are impossible due to E1-pro
ess (whi
h is spa
e-parity negative).The parity of E-photon is (�1)j , the parity of M -photon is (�1)j+1. But from 3S1 it seems possible to do with oneele
tron emitted in M1-wave (whi
h is spa
e-parity positive wave). From 1S0 state the 1-photon de
ay seems to beimpossible. That should be the longest level. (And it is a little bit upper 3S1?).3.12 q/q99m3 VThe Ali
e photon 1 is � j+i1 + � j�i1. Entangled with the photon j�i2;3 = j+;�i2;3 � j�;+i2;3 it gives rise to the3-photon state �(j++ �i123�j+� +i123)+�(j�+ �i�j� � +i). Given orthogonal basis of states for the 1st and the2nd photon, we 
an expand the total 3-photon wave fun
tion over this basis, where the 
oeÆ
ients of the expansion arethe wave fun
tions of the 3-rd photon. After measurement the state falls into that basis ve
tor whi
h was measured.Sin
e the basis of states for the 1st and the 2nd photon is the orthogonal the 
oeÆ
ients up to a s
ale 
an be foundby taking the s
alar produ
t. For ea
h 
ase j = a; b; 
; d the relationj�ij3 = h�jj1;2 (�(j++ �i123 � j+ �+i123) + �(j�+ �i � j� � +i)) (512)after expli
it substitution givesj�ia3 = �� j+i3 � � j�i3 (513)j�ib3 = �� j+i3 + � j�i3 (514)j�i
3 = +� j+i3 + � j�i3 (515)48



j�id3 = �� j+i3 + � j�i3 (516)Therefore, to obtain the same state from the 3rd photon that Ali
e initially had for the 1st photon, Bob has to rotatethe in
oming photon by the matri
es ��0;��3; �1;�i�2 
orrespondingly to the a,b,
,d 
ases.3.13 q/q00j1 Vd� = 1v 2��h jDe�ik0xV (x)eikxE j2Æ(Ef � Ei) d3k(2�)3 (517)d3k = d
k2mdEk�h2 (518)d�d
 = 4m2�h4q2 j Z 10 drV (r)r sin qrj2; Z 10 r sin qrr2 + a2 dr = 12�e�qa (519)V (r) = br2 + a2 ; b = �h2�mpA; a = � (520)d�d
 = Aq2 exp(�2�q) (521)3.14 q/q00j2 VÆE = �X jV0nj2En � E0 ; hn� 1jxjni =r n�h2m! (522)There are three non-vanishing matrix elements h000000V 100100i ; h000000V 010010i ; h000000V 001001i:ÆE = � 12�h!�2 �h2(2m!)2 (1 + 1 + 4) (523)3.15 q/q00j3 VIn the plane xy, while B is along z and Bz = B:A = �12 [rB℄; B = rotA; A� = 12rB; Ar = 0 (524)H = 12m �p� e
A�2 (525)where p is the momentum �i�h� of a free parti
le. Then eigenvalues of p on the 
ir
le are �hnR . The total answerE = �h22mR2 (n� R2eB2
�h )2 � e�hB2m
 (526)3.16 q/q00m1 Tq00m1 Problem 1.The energy of the state jn; s > is w(n+ s � 1=2) (�h = 1).Thus the levels jA >= jn; s >= j � 1=2 > and jB >= jn + 1; s >= j1=2 > are degenerate. At the �rst order ofperturbation theory the splitting is the di�eren
e between eigenvalues of the perturbation hamiltonian H1 = �xŜx < AjH1jA > < AjH1jB >< BjH1jA > < BjH1jB > ! =  0 �p n8mw�p n8mw 0 ! (527)And the splitting is just �p n2mw 49



3.17 q/q00m2 Tq00m2Let �!B be along z axis. Then 
onsider for states j12 > 
j12 >j � 12 > 
j � 12 >1p2(j12 > 
j � 12 > �j � 12 > 
j12 >)1p2(j12 > 
j+ 12 > +j � 12 > 
j12 >)It is also useful to express 2�!s e�!s p = (se + sp)2 � 3=2 First three states are already eigenve
tors with eigenvalues�� jBj(� + 
) In the basis of the last two ve
tors hamiltonian has the form �3� (� � 
)jBj(� � 
)jBj � ! (528)And the eigenvalues of this matrix are �(��p(2�)2 + ((� � 
)jBj)2)3.18 q/q00m3 Tq00m3 At let us remind the expli
it form of eigenve
tors of angular momentum 1j1 >= 38�ei'Sin�j0 >= 34�Cos�j � 1 >= 38�e�i'Sin�Splitting of representation 2 into two 1 has the formj2; 2 >= j1 > 
j1 >j2; 1 >= 1p2(j1 > 
j0 > +j0 > 
j1 >)j2; 0 >= 1p6(j1 > 
j � 1 > +j � 1 > 
j1 > �2j0 > 
j0 >)j2;�1 >= 1p2(j � 1 > 
j0 > +j0 > 
j � 1 >)j2;�2 >= j � 1 > 
j � 1 >This result is the simple 
onsequen
es of the symmetry 
onstraint and of the 
onstraint that j2; 0 > should beorthogonal to j0; 0 >= 1p3(j1 > 
j � 1 > +j � 1 > 
j1 > +j0 > 
j0 >)If we are interesting only in �1 = �2 = �=2 then j2; 2 >= 38�ei('1+'2)j2; 1 >= 050



j2; 0 >= 38� 1p6(ei('1�'2) + e�i('1�'2))j2;�1 >= 0j2;�2 >= 38�e�i('1+'2)And the result isdP = d�1d�2d'1d'2( 38� )2[2 + 23
os2('1 � '2)℄ (529)Or eventuallydPd' = 37� [1 + 13
os2'℄ (530)3.19 q/q01j1 VFor the potentialV (x1; x2) = 12M!2x21 + �Æ(x1 � x2) (531)�nd the probability of s
attering of in
oming parti
le eipx2 with os
illator transited 0! 1. Withw = 2��h 1v Z dk2�Æ(E2i �E2f � �hw) hk; 1jVpertjp; 0i (532)where jpi = eikx2, v is the in
ident velo
ity andj0i = �2b� � 14 e�bx21 ; j1i = �2b� � 14 2pbx1e�bx21 ; b = M!2�h (533)we getw = 2�m�h3v � 1k1 �2q218b e� q214b + 1k2 �2q228b e� q224b� ; (534)where k1;2 = �qp2 � 2m�h!�h2 , and qi = p� ki.3.20 q/q01j2 VFrom � �h22m d2dx2 + aÆ(x) = E (535)it follows that the jump of the derivative is 0j+� = � (536)where � = 2m��h2 . At ea
h band the wave fun
tion is aieipx + bie�ikx. From the gluing 
ondition between fun
tionsfrom the left al; bl and the right side ar ; br of the delta-fun
tion inserted in the point x the following relation follows albl ! =  1� �2ip � �2ipe�2ipx�2ipe2ipx 1 + �2ip ! arbr ! (537)Multiplying two matri
es with x = 0 and x = s we get the transition matrixM from right side of the whole potentialto the left side. The transmission 
oeÆ
ient isT = 1jM11j2 (538)51



And M11 = �1� �2ip�2 +� �2p�2 e2ips; (539)The re
e
tion 
oeÆ
ient is proportional to M12, we need to �nd when it vanishes. The equation is(1 + b2) + (1� b2) 
os 2�+ 2b sin 2� = 0 (540)where b = �2p and � = ps. From it follows the solution � = Æ + �+2�k2 , where tan Æ = �2p3.21 q/q01j3 V  1(t) 2(t) ! =  
os gBt2 i sin gBt2i sin gBt2 
os gBt2 !  1(0) 2(0) ! (541)gBT = � (542)The probability to remain in the same state is 
os2 �, where � = �2N . Thus answer for a) isPalwaysup = (
os2 �)N � 1� �22N (543)The probability of overturn (regardless of whether it was up or down) is p = sin2 �. The probability of k overturns ispk(1� p)N�k. We need to sum up over even number of overturns.NXk=0;k�evenCkNpk(1� p)N�k = 12[(1 + (1� 2p)N ℄ (544)3.22 q/q01m1 VExpli
itly the Hamiltonian H = ���iBi has the form� �B  
os � sin �e�i�sin �ei� � 
os � ! (545)with eigenvalues ��Bf1;�1g and the normalized eigenstates 
orrespondingly 0+(�) =  
os �2e�i�sin �2 ! ;  0�(�) =  sin �2e�i�
os �2 ! (546)The B �eld rotates and the resulting Hamiltonian 
ould be expressed as a result of the unitary transformation ofthe original Hamiltonian:H(t) = U�1� H0U� (547)whereH0 = ��B  
os � sin �sin � � 
os � ! (548)U� =  ei� 00 1 ! (549)That 
orresponds to the transformation of the eigenstates 0�(�) = U�1�  0�(� = 0) (550)52



For the Hamiltonian whi
h does not depend of time the evolution of the eigenstate with energy E isi�h _ = H ;  (t)� =  (t = 0)e� iE�t�h (551)Now, turn on the rotation of the Hamiltonian and try to �nd the solutioni�h _	(t) = U�1�(t)H0U�(t)	(t) (552)in the following form	(t) = A(t)e� iE+t�h U�1�(t) 0+ +B(t)e� iE�t�h U�1�(t) 0� (553)Substituting in the equation of motion we get:_A 0+ + _B 0� + U _U�1(A 0+ +B 0�) = 0 (554)Evaluating the matrix elements of the operator U in the basis �� 0�� we get the equation: _A_B ! = i _� 
os2 �2 
os �2 sin �2sin �2 
os �2 sin2 �2 ! AB ! (555)with the solution A(t)B(t) ! = ei�2  
os � sin �2 + 
os �2 sin � sin �2sin � sin �2 � 
os � sin �2 + 
os �2 ! A(0)B(0) ! (556)What is strange is that we got the exa
t solution, not approximate one.. Where is mistake? And sin
e sin �2 = 0at � = 2� the system returns into the same state (of 
ourse with the usual time-phase fa
tor). The probability to beex
ited is 0 ????3.23 q/q01m2 Va,b)The atoms are neutral. They 
an have dipole, quadrupole,... multipole moments. The energy of the dipole in the�eld of another dipoleU (r) = 3(d1r)(d2r) � r2d1d2r5 (557)is proportional to d1d2=r3.For the ground state the dipole moment is zero. The 
ontribution to the energy appears from the se
ond order ofthe perturbation theory.ÆE = �Xn jV0nj2En � E0 (558)To the ground state it is always negative. By dimensional reasoning d � abe, where ab is obtained from �h2ma2b = e2r ,therefore ab = �h2me2 , and d � hbar2me , and E � me4�h2 . ThusÆE � �� �h2me�4 �h2me4 r�6 (559)
) For the �rst ex
ited state the perturbation to the energy will be given by the solution of the se
ular equation.Sin
e the non-diagonal matrix elements of the dipole moment do not vanish, there will be non zero 
ontribution alreadyin the �rst order of perturbation theory.ÆE � ddr3 (560)d) The 
hara
teristi
 time of pro
esses inside atom is the period of the emitted light. Therefore the retarding 
ouldbe important at the distan
es larger than the wavelength of the emitted light.� � 
! � 
�h3me4 (561)53



3.24 q/q01m3 VThe probability of s
attering per time unit for the plane wave normalized for 1 in
oming parti
le 
ontained in the boxL � L, with the wave fun
tion jiLi = 1L jii = 1Leipx and the outgoing parti
le with one parti
le per unit volume (thewave fun
tion is jfi = eikx) is given byw = 2��h Z d2k(2�)2 Æ(Ef � Ei) 1L2 j hf jV jii j2 (562)The probability of s
attering for just one parti
le is obtainedp = wLv = 2��hv Z d2k(2�)2 Æ(Ef �Ei) 1L j hf jV jii j2 = 2��hv 1(2�)2 m�h2 Z 2�0 d�q=ksin� 1L j hf jV jii j2 (563)1L j hf j V jii j2 = �2 1L ������ 14aN n=NXn=�N Z (2n+1)a2na eiqx�����2 = �2 14aN ����� 1iq n=NXn=�N(eiqa � 1)e2inqa�����2 = (564)= �2 a24aN ���� 1qa sin 2(N + 12 )qa
os qa2 ����2 = (565)(566)Using relation1�A Z 1�1 sin2A��2 d� = 1 (567)we substitute at 1�A sin2 A��2 = Æ(�) at A!1 and get1L j hf j V jii j2 = �a2 Æ(qa) + �a8 k=1Xk=�1 Æ(qa � �(2k + 1)) (568)Note, how N has been 
an
elled. Therefore the probability of s
attering is the sum of s
atterings to dis
rete angleswith the 
ondition qa = (2k + 1)�a or qa = 0.p = �2 2��hv 1(2�)2 m�h2 Z 2�0 d�q=ksin� "�a2 Æ(qa) + �a8 n=1Xn=�1 Æ(qa � �(2n+ 1))# (569)Therefore the answer isp = �2 2��hv 1(2�)2 m�h2 2664�2 + �8 Xj2n+1j<qa� 1r1� ��(2n+1)a �23775 (570)That was the probability of s
attering at all angles. If we want to 
ompute only ba
kward s
attering then we needto take one half of the 
ontribution from the se
ond term (in large bra
kets).3.25 q/q02m1 TEquations of motion are_x(t) = i[H;x℄ = p(t) (571)_p(t) = i[H; p℄ = �x(t) +p2f(t) (572)With 
onditionx(t = 0) � x̂0 (573)54



p(t = 0) � p̂0 (574)Thus the solution for t < 0 isx(t) = 
os tx̂0 + sin tp̂0 (575)p(t) = 
os tp̂0 � sin tx̂0 (576)For t 2 [0; T ℄x(t) = 
os tx̂0 + sin tp̂0 + p2fo(1�w2) [
oswt� 
os t℄ (577)p(t) = 
os tp̂0 � sin tx̂0 � p2fow(1�w2) [w sinwt� sin t℄ (578)And for t > Tx(t) = 
os tx̂0 + sin tp̂0 + p2fo(1�w2)A 
os(t � T + ') (579)p(t) = 
os tp̂0 � sin tx̂0 � p2fo(1�w2)A sin(t� T + ') (580)wheretan' = sinT �w sinwT
os T � 
oswT (581)and A =q1 + 
os2wT + w2 sin2 wT � 2(
oswT 
os T + w sinwT sinT ) (582)
). We know that _E = h0j �H�t j0i. Sin
e at t = 0 x̂ has no C-valued part there is no jump in energy for t = 0.Similarly to avoid jump in energy when we will turn perturbation of we assume that x̂ has no C-valued part at t = Tas well. Using exa
t solution for w = 1 this means sinT = 0. Using this andE(T )� E(0) = 12  p2f0(1�w2)!2A2 (583)we have in the limit w! 1E(T )� E(0) = f204 T 2 (584)3.26 q/q02m2 Tq02m2 a). xi i+1 = L3 ,S = 1=2,S = S1 + S2 + S3 b). Sin
e � << 1 then S = 1=2 for new va
uum too. Sin
e Pij doesnot 
hange Sz we will have two similar va
ua for Sz = �1=2.Thus va
uum will have form ja; b; 
 >= aj+;+;� > +bj+;�;+ > +
j�;+;+ > with a+ b+ 
 = 0 for S = 1=2 andx12 = x13 = L=3 + �. Then hamiltonian isH = J(1� �L3 )[S2 � 9=4℄ + kL26 + 3k�2 � ��2 [P12 + P13 � 2P23℄ (585)For |-b-
,b,
> to be an eigenve
tor the following equation(s) should be satis�edHj � b� 
; b; 
 >= Ej � b� 
; b; 
 > (586)or (here h = �32J(1� �L3 ) + k[L26 + 3�2℄)hb+ 3��2 
 = Eb (587)55



h
+ 3��2 b = E
 (588)It is important here that third equation is just the sum of �rst two (no additional 
onstrains). Then E = h� ��2 (andthe state is ) Now we 
an minimize with respe
t to �:� = � �4k (589)but in the both 
ases a = b and only one eigenve
tor (plus the same for S1=2). So the ground state is j � 2a; a; a >; � = +�=4k3.27 q/q02m3 Tq02m3 a). Ay = 0 for x < 0, Ay = B0x for x 2 [0::d℄ and Ay = B0d for x > dH = � �h22m [�2x + (�y + iAy)2℄ (590)We will restri
t ourselves for the wave fun
tions of the form 	 = 	(x) and thus �y = 0H = � �h22m [�2x �A2y ℄ (591)b). When x < 0 and 	 = eikx we have no 
onstrains on k. When x > 0 and 	 = ei~kx then we have a 
onstraintk2 = ~k2+ (B0d)2 
). Criti
al k is equal to B0d. Classi
aly magneti
 �eld will rotate (turn the parti
le and if k < B0dthen it will return ba
k). At �rst v = km . Then F = mv2r = B0v. Thus the radius of the 
ir
le is r = kB0 . If d > r theparti
le will return ba
k. d).Ji = i�h22m [ �	(�i � iAi)	� (�i + iAi) �		℄ (592)x < 0 	 = eikx +RE�ikxx > d 	 = Tei~kx Then Jx = i�h22mk(1� R2); x < 0Jx = i�h22m~kT; x > dJy = �h2mB0xj	j2; x 2 [0::d℄Elsewhere Jy = 0 There is a 
ow along x-axis,as usual (we will see below that the 
ow to the left of 0 is equal to the
ow to the right of d). And there is also probability 
ow along y-axis, inside the strip, �lled with magneti
 
ux.e). Integrating S
hrodinger equation fro 0 to d and taking d to 0 we get that 	(0) = 	(d) and �x	(d)� �x	(0) �d! 0 Thus 	(0) = 	(d), (1 + R) = T and �x	(d) = �x	(0), k(1� R) = ~kR As a resultT = 2kk + ~k; R = k � ~kk + ~k (593)3.28 q/q02j1 TWave fun
tion has form	(x) =  (x)x (594)Then  <(x) = sinh(kx) (595)56



 =(x) = �eipx + �e�ipx (596)and  >(x) = Ae�k(x�b) (597)Now equation about smoothness of our wave-fun
tion imply� = 12pe�ipx[p sinh ka� ik 
osh ka℄ = A2pe�ipb[p+ ik℄ (598)� = 12peipx[p sinh ka+ ik 
osh ka℄ = A2pe+ipb[p� ik℄ (599)This imply that A is a real quantity or<e�ip(b�a)[p sinhka + ik 
osh ka℄[p� ik℄ = 0 (600)or tan(p(b � a)) = pk sinh ka 
osh kap2 sinh ka� k2 
osh ka (601)We will follow RHS of the last expression as the fun
tion of p. At p = 0 our fun
tion is 0. LHS is also zero butthis is not 
orre
t solution. Moreover-there is no su
h solution at all-during our 
onsideration we divided by p and ourformula works only for p 6= 0. Then RHS de
rease and goes to minus in�nity at the point where p2 sinh ka = k2 
osh kaAfter that RHS de
reasing from plus in�nity and goes to 1p2mV0a as k! 0. There is only one possibility for this 
urvedoesn't 
ross tan 
urve: its last point should below tan brun
h and p2mV0(b � a) < �2 (we still below the �rst tanbrun
h).This 
onditionp2mV0a tanp2mV0(b � a) = 1 (602)is just the 
ondition for groundstate to have zero energy! And our se
ond 
onditionp2mV0(b� a) < �2 (603)means that our wave-fun
tion has no zeroes and that it is the ground-state of the system.Con
lusion: our 
onsideration demonstrates that maximal symmetry state without zeroes is ground-state and whenground-state energy is large than zero there is no bound-states.3.29 q/q02j2 Ta). Plane wave  = eikx should be
ame  = ei(k�mv)x and general fun
tion  (x) be
ame ~ =  (x)e�imvx. Now wewill also 
onsider time dependent-wave fun
tion.If i _ = [� �2m + U ℄ (x; t) (604)then i _~ (x; t) = [� �2m + U ℄ ~ (x; t) = _ (x; t)e�imvx + mv22  (x)e�imvx + iv� (x; t)e�imvx (605)Result:~ (x; t) =  (x + vt; t)e�imvx�imv22 t (606)b). Obviously P = jAj2 andA = h 0j �� 0(x)e�imvx� (607)57



where 0(x) = e�jxja (608)the Hydrogen atom ground state. We do not 
are here about general 
oeÆ
ient. After all A(v) would be normalizedfrom the 
ondition A(0) = 1.P � Z 10 Z �+1�=�1 r2dre�2ra e�imvr�d� � a3(1 + m2v2a24�h2 )2 (609)EventuallyA(v) = 1(1 + m2v2a24�h2 )4 (610)3.30 q/q02j3 Ta). First of all we separate wave fun
tion of 
enter of mass. Or ��(x1; x2) =  (x1 + x22 ) 
	��(x1 � x2) (611)The Hamiltonian for 
enter of mass is trivial (as for free parti
le with mass 2M ) and  (x) is just the plane wave.At the next step we separate spin and spa
e wave fun
tion. Now we have to wave fun
tions for spin zero 	0(x)and for spin one 	1(x). Corresponding Hamiltonians areH0 = P 2M + 2�h2U0(x) (612)and H0 = P 2M (613)Eigenstates with total spin zero are	0(x) =r 2�a sin �n(x+ a)2a ; En = �2�h2(n1 � 1)4Ma2 (614)with integer n.Eigenstates with total spin one are	S2=1;SZ (x) =r 1Leikx; Ek = k2M (615)with arbitrary k. The energy of the ground state is zero.b).Sin
e the system is in the groundstate we 
on
lude that momentum of 
enter of mass is zero. Then expandingexternal �eld in the length of the system we have the following perturbing HamiltonianH1 = Sz�B(x1 + x22 ) + x1 � x22 �B0(x1 + x22 )[S1z � S2z ℄ (616)We have to 
al
ulate
	S2=1;Sz (k)��H1 j	0(n = 0)i (617)Sin
e Sz	0 = 0 we drop the �rst term of H1. We also express 
os(kx�wt) as <ei(kx�wt) Then we have to 
al
ulateP = ÆSz=1r 2�aL Z a�a sin(�(x+ a)2a )12eikx�kB0 (618)dx All this 
ould be multiplied by phase fa
tor from B(x) � eikx in the 
enter of mass. Cal
ulating this one getsP = ÆSz=1r 18�aL�B0[ 
os(ka)ka+ �2 � 
os(ka)ka� �2 ℄ = ÆSz=1r 18�aL�B0 4� 
os ka�2 � (2ka)2 (619)Now probability per se
ond isT�1 = 4�2M�2B20 
os2(ka)k(�2 � (2ka)2)2 (620)Halftime T2 is T log 2. 58



3.31 q/q03m1 Ta). Wave fun
tion ̂ = exp(�i�(t)�z2 ) (t) (621)evolves a

ording to the HamiltonianHrot = [12 _ + �B0℄�z + exp(�i�(t)�z2 )[�x 
os �+ �y sin�℄exp(i�(t)�z2 ) (622)Using thate�i�(t)�z2 [�x 
os �+ �y sin�℄ei�(t)�z2 =  e�i�2 00 e�i�2 ! 0 ei�e�i� 0 ! ei�2 00 ei�2 ! =  0 11 0 ! (623)And eventuallyHrot(t) =  �B0 + 12 _� �B1�B1 �(�B0 + 12 _�) ! (624)In the 
ase �� = 0 Hrot doesn't depend on t.b). � = w1t. Then Hrot has eigenvalues�r�2B21 + (�B0 + 12w1)2 (625)with eigenve
tors (not normalized) 1p�2B21+(�B0+ 12w1)2�(�B0+ 12w1)�B1 ! ; 1�p�2B21+(�B0+ 12w1)2�(�B0+ 12w1)�B1 ! (626)
orrespondingly.Sin
e e�i��z2 preserve up-down dire
tions we 
an 
onsider  ̂ instead of  studying spin 
ipping. At the momentt = �T spin was dire
ted down. Time-dependent wave-fun
tion isw �r�2B21 + (�B0 + 12w1)2 (627) ̂(t) = e�iw(t+T ) 1p�2B21+(�B0+ 12w1)2�(�B0+ 12w1)�B1 !+ eiw(t+T ) �1+p�2B21+(�B0+ 12w1)2+(�B0+ 12w1)�B1 ! (628)Condition that at the moment t = T spin will be dire
ted up is� 
ot(2wT ) = pw2 � �2B21w (629)
). Ground level has energy �w(t). At t = �T 
orresponding ve
tor has form 1�B1�T�2�B0 +O( 1(�T )2 ) ! (630)spin is up.At t = +T 
orresponding ve
tor has form 1� �T�B1 + O(1) ! (631)spin is down. 59



3.32 q/q03m2 Ta). Energy of bound state is E = � k22m . Then equation whi
h determines these states istan� = � ��p�20 � �2 (632)Here � = r0p2mV0 � k2 and �0 = �(k = 0). These equation has at least one solution if RHS well de�ned to the rightof � = �2 . In the opposite 
ase there is no solution. Thus there is no solution if �(k = 0) = �2 orV
r = �28mr20 (633)This 
ondition 
oin
ides with the 
ondition k = 0.b).By the de�nition Æl is the shift from the formulaRkl ! sin(kr � �l2 + Æl(k)) (634)For l = 0 equation for Æl istan(p2mV0 + k2r0)p2mV0 + k2 = tan(kr0 + Æ(k))k (635)If k ! 0 thenÆ(k) = k[ tan(p2mV0r0)p2mV0 � r0℄ (636)
). A obviously vanishes when V0 ! 0 and goes to in�nity when V0 ! V
r. d).�l = 4�k2 (2l + 1) sin2 Æl(k) (637)In the 
ase k! 0�l = 4�[ tan(p2mV0r0)p2mV0 � r0℄2 (638)When V ! V
r Æ(k) is not small any more. Thus�l � 1k2 = 1E � E0 (639)or there is pole in 
ross -se
tion.3.33 q/q03m3 Ta). Representation J = 3=2jJ = 3=2; Jz = 3=2i = j1i 
 j1=2i (640)jJ = 3=2; Jz = 1=2i = 1p3 [p2 j0i 
 j1=2i+ j1i 
 j�1=2i℄ (641)jJ = 3=2; Jz = �1=2i = 1p3 [p2 j0i 
 j�1=2i+ j�1i 
 j1=2i℄ (642)jJ = 3=2; Jz = �3=2i = j�1i 
 j�1=2i (643)Thus hJ = 3=2; JzjSz jJ = 3=2; Jzi = 13Jz (644)60



Representation J = 1=2jJ = 1=2; Jz = 1=2i = 1p3 [p2 j1i 
 j�1=2i � j0i 
 j1=2i℄ (645)jJ = 1=2; Jz = �1=2i = 1p3 [p2 j�1i 
 j1=2i � j0i 
 j�1=2i℄ (646)Thus hJ = 1=2; JzjSz jJ = 1=2; Jzi = �13Jz (647)b). Assuming thathJ; JzjSz jJ; Jzi = gJJz (648)we 
an 
al
ulate gJ for only one Jz.For J = l + 1=2 we take jJ = l + 1=2; Jz = l + 1=2i = jli 
 j1=2iand thushl + 1=2; l+ 1=2jSz jl + 1=2; l+ 1=2i = 1=2 (649)Con
lusiongl+1=2 = 11 + 2l (650)For J = l� 1=2 we will also take ve
tor with Jz = J . In order not to write down it expli
itly we note that [Sz; Jz℄.Let us 
onsider all (two) ve
tors with Jz = l � 1=2. They arejai = jl + 1=2; l� 1=2i (651)and jbi = jl � 1=2; l� 1=2i (652)Now Sz jai = 2l � 12(2l + 1) jai+ xb (653)sin
e haj jbi = 0 and hajSz jai = 2l�12(2l+1) . Let us a
t by Sz to Sz jai on
e again. Using that S2z = 1=4 (property ofS2 = 3=2 representation) we have14[1�� 2l � 1(2l + 1)�2℄ jai = xSzb+ x 2l � 12(2l + 1) jbi (654)Now using orthogonality one getshbjSz jbi = � 2l � 12(2l + 1) (655)or gl�1=2 = � 11 + 2l (656)
). Here �!A = �!S and�!A�!S = S2 + 12[J2 � L2 � S2℄ = 12[J2 + S2 � L2℄ (657)For J = l + 1=2 it is �!A�!S = 12 (l + 3=2) And J(J + 1) = 12 (2l + 1)(l + 3=2).For J = l � 1=2 it is �!A�!S = �12(l � 1=2) And J(J + 1) = �12 (2l + 1)(l � 1=2).61



4 Statisti
al Physi
s4.1 s/s98j1 VWe 
onsider that the massless quarks are Fermi-distribute inside the 
on�ned volume of a ball with the radius R.Tnen, if the degenera
y fa
tor is b = 18 we get from the � = 0 Fermi distribution (using d3p = d
E2dE)N = 43�R3b 4�(2��h)3 Z 10 E2dEeE=T + 1 = 43�R3b 4�(2��h)3T 3
1 (658)E=2 = 43�R3b 4�(2��h)3 Z 10 E3dEeE=T + 1 = 43�R3b 4�(2��h)3T 4
2 (659)where
1 = 32�(2); 
2 = 7120�4 (660)AndN = �ER�h
 �3=4� b24�� 14 a1a� 342 (661)4.2 s/s98j2 VWe 
onsider that � = ��From the grand 
anoni
al distributionwnN = e
+�N�EnNT (662)in the limit T � j�j, when e�=T � 1 we have (Boltzman statisti
s)
 = �TXk log(1� e��EkT ) � TXk e��EkT (663)For 
lassi
al non intera
ting gas in the box sum the sum is readily 
omputed withPV = �
 = e�=TTX e�EkT = e�=TT Z d3pd3x(2��h)3 e�E(p)T = V T 5=2e�=T � m2��h2�3=2 (664)Therefore a)P = T 5=2e�=T � m2��h2�3=2 (665)b)� = T log�PT�5=2�2��h2m �� (666)
) _Q = l _N = � _V PT (667)62



4.3 s/s98j3 Va,b) The partition fun
tion isZ = (1 + e�E=T )N (668)where E = g�b�hH. ThenF = �T logZ; S = �dFdT (669)S = N �log(1 + e�E=T ) + ET e�E=T1 + e�E=T � (670)The entropy S = 0 at T = 0 and S = log2N at T =1 as it should be.
) When the external �eld in
rease the system tends more to o

upy ground state, therefore it emits heat.ÆQ = T (Sf � Si) (671)d) In the adiabati
 pro
ess S is 
onserved, thereforeHf=Tf = Hi=Ti (672)4.4 s/s98m1 VFor the ideal gas with 
onstant 
v the adiabati
 pro
ess takes the form pV 
 = 
onst, where 
 = 
p
v . The isotermi
follows from the equation of state pV = �RT . The work isW = I pdV = p1V1 log V2V1 + p2V2 1
 � 1  1� �V2V3�
�1! � p3V3 log V3V4 � p1V1 1
 � 1  1��V1V4�
�1! (673)Sin
e p3V3 = p2V2 �V2V3�
�1, and p1V1 = p2V2 = �RT1, and p3V3 = p4V4 = �RT2 we get the answerT1 = W�R " 1��V2V3�
�1! log V3V4#�1 (674)T2 = T1�V2V3�
�1 (675)and the 
onsisten
y 
ondition V2V3 = V1V4 (therefore one value of volume is unne
essary to spe
ify).4.5 s/s98m2 VTo 
he
k whether the bose-
ondensation takes pla
e or not 
ount the possible number of parti
les on the ex
ited levelswith � = 0.N = V(2��h)3 Z d3peET � 1 (676)with d3p = 4�p2mEmdE (677)and Z 10 x��1dxex � 1 = �(�)�(a) = �(�) (678)63



equalsN =  LpmT2��h !3 4p2��(3=2) = 1:2 � 1017 (679)Sin
e it is less than the given number of parti
les, bose 
ondensation takes pla
e, and the ground level is o

upied byma
ros
opi
 number of parti
les. Sin
e in this approximation j�j � jE1 � E0j, the number of parti
les on the �rstex
ited energy level with g = 3 and �E1 = E1 � E0 = �h22m � �L�2 (22 � 1) is given�n1 = geE1�E0T � 1 = 8 LpmT2��h !2 = 1:8 � 1011 (680)4.6 s/s98m3 VThe limit T ! 0 is the limit of � = 1T ! 1, when the perturbation theory for 
omputing Z = Tr e��H forapproximately quadrati
 hamiltonian works.Z = Z dpdx2��h e��H(p;x) = 12��h Z dpe�� p22m Z dxe��(
x2+gx3+fx4) =s�22m�2
 �1� 34 1� f
2 + 1516 g2�
3 +O(��2)�(681)Z = 
onst � T �1� 34 f
2T + 1516 g2
3 T +O(T 2)� (682)
 = dEdT = T dSdT = T ddT ��dFdT � ; F = �T logZ (683)therefore
 = 1� 3f2
2T + 158 g2
3 T + O(T 2) (684)4.7 s/s99j1 Ts99j1 a).< n� >= [ex � 1℄�1 � 3[e3x � 1℄�1; x = (�� �)=� (685)(�� �)=� = �1 < n� = 0 >(�� �)=� = 0 < n� = 1 >(�� �)=� = +1 < n� = 2 >b). dN = L��hp m2EdE
). � = �2�2�h28m , � = N=Ld). < E >= N�=3 Substitute � from 
).e). CV = NT2�(T=0) R1�1 dxx < n� > (x) and � = �14.8 s/s99j2 Ta). Sin
e P = � �F�V and F = V f we haveP = �(1 � �� log � )f(T; �) (686)b). Obviously�P�� = �f 00 > 0 (687)64



Or f 00 > 0.
).(In this pro
ess we start from very small � and in
rease it during spe
ulations.) We 
an de
rease f if 
hangingit into a straight line! Really, at �rst f 00 > 0 and then f 00 < 0. And the straight line will be below f 
urve. Thatstraight line means that instead of pure gas with given f(T; �) there are gas and liquid (
ondensed from this gas).Now we will 
onstru
t ~f .At the point �g we understand that gas be
ame into gas plus liquid. In this 
ase fg = f(�g ) (the 
orrespondingpressure is the pressure of liquid with given temperature) and do not in
reases at all. All additional matter (gas)be
ame liquid. Its free energy per volume we denote as fl assuming that this quantity 
orresponds to the given pressureof the gas Pl = Pg(�g) or� P = fg � �gf 0(�g) = fl � �lf 0(�l) (688)Here the density of liquid is �l. This equation determines �l as a fun
tion of �g . (* See below)We apply this 
onditions by hands from the physi
al sense but we 
an 
hange it by the 
ondition that ~f we
onstru
t should be smooth! Now we 
onstru
t ~f and 
an do anything. After 
onstru
tion we will 
he
k or result.So, we pro
eed with 
onstru
tion ~f and will 
he
k this 
ondition afterwards.Now we have the following equations for volumesVg + Vl = V (689)and Vg�g + Vl�l = V � (690)Finally~f = VgV fg + VlV fl = �(fl � fg) + fg�l � fl�g�l � �g (691)for � > �g and ~f = f for � < �g. Obviously ~f 00 = 0 and this is better than f 00 > 0 at �rst and f 00 < 0 than.This formulas works well until ~f < f . At the point �1 where ~f = f we have to swit
h to f again.We understand that this swit
hing should o

ur when all our matter will be liquid. And now we will demonstratethat this is so. Our equation is (�st 
he
k of smoothness ~f )~f(�1) = f(�1) (692)(*)Using that our liquid is the phase of our gas it should also be des
ribed by our 
urve. We 
on
lude that fl = f(�l).Now it is easy to 
he
k that �1 = �l is the solution and~f(�l) = f(�l) � fl (693)On
e again, we 
onstru
t ~f for �g < � < �l and one 
ould simply 
he
k that ~f (�g) = f(�g) and ~f (�l) = f(�l).Only one ambiguity we do not know pre
ise value of �g .So the equation to determine �g is our se
ond 
he
k: ~f 0(�g) = f 0(�g) and ~f 0(�l) = f 0(�l). We 
an not solve thisequation expli
itly but generally it spe
i�es �g . Now one 
an say that we have two equation to spe
ify one variable�g , but using equation for �l(�g)� P = fg � �gf 0(�g) = fg � �gf 0(�g) (694)we leave only one of it.We end with 
onstru
tion of f and now going to pressure.d). Now the spe
ulations about the pressure are trivial: P = �f 0 � f and if ~f is smooth (with its �rst derivative)then P is also smooth. And it is obvious that for �l > � > �g pressure is 
onstant. So we 
hange the 
urve with lo
alminimum and maximum by the horizontal line. 65



4.9 s/s99j3 Ts99j3EÆ
ien
y of refrigerator is equal to the ratio of the temperatures of refrigerated stu� and the medium outsideAQ = TmediumTr:stuff (695)A is a work spent by the ma
hine, Q is the heat taken from refrigerated stu�. Tmedium 
ould be arbitrary, but largethan room temperature-the room (medium) should refrigerate(!) the ma
hine. To minimize A Tmedium should beequal to room's temperature. During the pro
essdQ = �m
dT (696)and A = TmediumT dQ (697)Integrating this equation one getsA = m
Troom ln(Troom=Ti
e) (698)And at the end heat to turn the water to i
e is m� when the eÆ
ien
y is Troom=Ti
e . FinallyA = mTroom [ �Ti
e + 
 ln(TroomTi
e )℄ (699)4.10 s/s99m1 VThe �rst step is to �nd the equation of adiabati
 pro
ess in the T; V 
oordinates:� �T�V �S = �(T; S)�(V; S) = �(P; V )�CVT �(V; T ) = � T�CV ��P�T �V (700)In the problem CV = 
onst, p = nRTV (1 + ��V ), thus at S = 
onst pro
essZ �CV dTT = � Z nRV (1 + ��V )dV (701)�CV log TfTi = �nR�log VfVi + ��� 1Vi � 1Vf �� (702)If denote 1; 2; 3; 4 point on the PV diagram going 
lo
kwise from the left upper 
orner, thenT2 = T1� (703)T3 = T4� (704)where� = exp�� RCV �log VfVi + ��� 1Vi � 1Vf ��� (705)and, sin
e CV = 
onst the energy of gas U = �CvT + f(V ), where f(V ) does not need to be determined� = AQ = T1 � T2 + T3 � T4T1 � T4 = 1� � (706)66



4.11 s/s99m2 VSin
e all states have equal energy the thermodynami
s of this system is governed just by the entropy S(L), i.e. lognumber of states for a given L. Let l be length in the a units l = L=a. Then N+ = 12(N + l), N� = 12 (N � l).S = logCN+N = logN !� log(((N � l)=2)!)� log(((N + l)=2)!) (707)At x!1logx! � x(logx� 1) (708)thereforeS � N log 2� l2N = 
onst � L2Na2 (709)Then, fromdE = TdS � FdL (710)and dE = 0 we getF = T dSdL = �2T LNa2 (711)The required work to stret
h from 0 to Lmax is isW = �A = T L2maxNa2 (712)With stret
hing the entropy de
reases, and therefore the rubber gives out the heat (0 > Q = TdS = A).4.12 s/s99m3 VThe ex
itations !2 = 
� k3 obey Bose statisti
s with � = 0. Therefore the density of the energy per areaE = 1(2��h)2 Z d2p "e "T � 1 (713)with d2p = ��h2d(k2) = ��h2d( �
 ( "�h )2) 23 = ��h2 � �
�h2� 23 d" 43 is equal toE = 1(2��h)2��h2� �
�h2� 23 43T 73 I (714)whereI = Z 10 dxx 73�1ex � 1 = ��73� � �73� (715)and 
V = dEdT = 79��73� � �73� 1� � �
�h2�23 T 43 (716)
67



4.13 s/s00j1 TUsing ideal gas approximationZ = Z d3nXN e�N(En��)T 2N
shN (g�bH) (717)Using ideal gas approximation this will be justZ = Z d3n(1 + e�(En��)T 2
sh(g�bH) (718)and lnZ = Z d3ne�(En��)T 2
sh(g�bH)) = 2
sh(g�bH))lnZ0 (719)Pressure is given byP = �F�V = ��T lnZ�V = P02
sh(g�bH)) (720)Thus P (H1)P (H2) = 
sh(g�bH1)
sh(g�bH1) = ZH (1)ZH (2) (721)Vivod-magnitnoe pole soset.4.14 s/s00j2 TWe deal with adiabati
 expansion (inverse) of ideal gas. Se
ond low of thermodynami
s saysdQ = 0 = dU + PdV (722)and dU = J2NkdT (723)where J is the number degrees of freedom. Then using following relation for ideal gasPV = NkT (724)one simply getsPV 
 = Const (725)where 
 = J+2J = n Thus for N2 n = 75 sin
e J = 5.4.15 s/s00j3 Ta). When � < rho
r then � < 0 and determined from the equationN = Z d�(E) < n(E) >= Z d3n 1e�E(n)+�T � 1 (726)E(n) = k22m ; 2�n = kL b). When � > �
r � = 0. Distribution of parti
les at any ex
ited state is given by formula froma. with � = 0. This time N = N (T )-number of parti
les at the ex
ited states and all other parti
les (N-N(T)) at theground level.
). N
r is just the number of parti
les equal to N (T ) from a. It is 
orresponds to the 
ase, when � = 0, but stillmi
ros
opi
 number of parti
les at the ground level. It is easy to 
al
ulate N
r(T; V ):N
r(T; V ) = V T 3=2m3=2 A21=2�2 (727)68



A = Z 10 dt t1=2et � 1 (728)So �
r � T 3=2 or 
 = 3=2. d). For system remains in the 
ondensed phase A should be large enough: de
reasing oftemperature should be faster then de
reasing of density (number of parti
les) for density to satisfy � < �
r(T ). Wewill �nd now 
riti
al value for A when to remain in the 
ondensed phase is still possible.So we assume that system is in 
ondensed phase, but without any additional funds: any time � is just equal to�
r. Sin
e volume of the system is 
onstant this meansdNN = 3dT2T (729)The energy of the system at 
riti
al point is justE = V T 5=2m3=2 B21=2�2 (730)whereB = Z 10 dt t3=2et � 1 (731)Number of parti
les, whi
h go away from the system is �dN > 0. They 
arry out the energy AEN jdN j (here is nodi�eren
e between mean energy of the parti
les before same part go away or before that-they 
arry small amount ofenergy � dN thus di�eren
e before or after will be � dN2). A

ording to the relation E = E
r(T;N )dE = AEdNN = E5dT=2T (732)Thus AdNN = 5dT=2T; dNN = 3dT2T (733)Answer:A > 53 (734)4.16 s/s00m1 VWhen two phases are present in the system at given temperature T the 
on
entrations of 
omponents in them aredetermined by 
rossing of the horizontal line T with the 
urves separating phase areas. In the given problem, whileboth phases are present in the system, the 
on
entration of x in the liquid is always three times less than that in thegas (during boiling the 
on
entration of A in the liquid de
reases). From 
onservation of the total amount of A:xi = (1 � p)xf + 3pxf (735)where p is the part of liquid that was turned into gas, and xi = x; xf = 12 .p = xi � xf2xf = 12 (736)4.17 s/s00m2 Ta).The Brownian parti
le started at t = 0 with zero initial speed from the point r = 0._r(t) = 1M Z t0 d�F (�)� 6��br(t) (737)Let F(t) = 1M Z t0 d�F (�) (738)69



Then r(t) = Z dt0G(t; t0)F(t0) (739)_G+ 6��bG = Æ(t� t0) (740)and G(t� t0) = �(t � t0)e�6��b(t�t0) (741)As a resultr(t) = Z t0 dt0e�6��b(t�t0)F(t0) (742)To make this result easy we 
an integrate by parts over t0 noting that (ex)0 = ex Thenr(t) = 16��b [F(t)� Z t0 dt0e�6��b(t�t0)F (t0)M ℄ (743)Now it is simple to 
al
ulate _r_r(t) = Z t0 dt0e�6��b(t�t0)F (t0)M (744)b). We know that in equilibrium at temperature T every parti
le (non only elementary) should have energy 32kT or32kT = M2 < _r2(t) >= C24M��b [1� e�12��bt℄ (745)Or 
al
ulations show us that energy, indeed, doesn't 
hange with time short while after beginning of the pro
ess. ThusC = 48MkT��b (746)
).< r2(t) >= C(6��bM )2 [t+ 112��b (�3� e�12��bt + 4e�6��bt)℄ (747)or after several mean relax times � = (6��b)�1< r2(t) >= 8kT�M [t� �4 ℄ (748)k 
ould be measured through the angle in the graph < r2 > v.s. t.Another solution(V)From the equation of motion for the parti
le_v + �v = f; (749)where v = _x; � = bM ; f = FM follows the solution for the response to the f = Æ(t)v(t) = e��t; t > 0; x(t) = 1� (1� e��t) (750)and by the linearity for the general f(t):1v(t) = Z t0 d�e��(t��)f(� ) x(t) = Z t0 d� 1� (1 � e��(t��))f(� ) (752)1 Note, that the se
ond formula 
ould be also obtained dire
tly from the �rst by 
hanging order of integration:x(t) = Z t0 dt0 Z t00 f(�)e��(t0��)d� = Z t0 d� Z t� dt0f(�)e��(t0��) = Z t0 d�f(�) 1�(1� e��(t0��)) (751)70



In Fourie de
omposition, where x! = 12� R dte�i!tx(t) and x(t) = R d!x!ei!tv! = f!i! + � (753)and sin
e hf(t)f(t0)i = 
Æ(t� t0) with 
 = CM2hf!f!0 i = 1(2�)2 Z dtdt0e�i!te�i!0t0 h
Æ(t� t0)i = 12�
Æ(! + !0) (754)we gethv(t)v(t0)i = Z d!d!0 1i! + � 1i!0 + �ei!tei!0t0 12�
Æ(! + !0) = Z d! 1�2 + !2 
2� = 
2�e�jt�t0j (755)and therefore 
r2(t)� is linearly growing at large tddt 
r2(t)� = ddt �Z t0 v(� )d� Z t0 v(� 0)d� 0� = 2 Z t0 
2�e��(t�� 0)d� 0 = 
�2 (1 � e��t) (756)The 
onstant 
 = CM2 = 2� 
v2� and at t!1 the growth is 
r(t)2� = 2t hv2i� = t2�3kbT=M6��R=M = t kbT��R4.18 s/s00m3 Ta). We will start from partition sumZ = (1 + �)N (1 + �e��T )Ni (757)(here � = e �T ) ThenF = �T logZ = �TN [log(1 + �) + � log(1 + �e��T )℄ (758)and f = FN = �T [log(1 + �) + � log(1 + �e��T )℄ (759)Now we will determine � from the 
ondition that total number of parti
les equal to N :N = N [ �1 + � + � �e �T + � ℄ (760)and �(�; T; �) = 1� �+p(1� �)2 + 4�e �T2� (761)b). Density of defe
ts is justn(T ) = � �e �T + � = �1 + ��1e �T (762)
). When T !1 then�(T )! ��1[1 + �T �1 + � +O( �2T 2 )℄ (763)and n(T ) = �1 + � � �T ( �1 + � )2 +O( �2T 2 ) (764)When T ! 0 then�(T )! ��1=2e �2T +O(1) (765)71



and n(T ) = p�e��2T + O(e��T ) (766)Con
lusion: n(T ) starts from 0 at zero temperature and in
reases up to �1+� at in�nite temperature. d). C = dEdT andE = n(T )�. SoC = �n0(T ) = ��T 2 e �T ��1n2(T )[1� e �Tp(1� �)2 + 4�e �T ℄ (767)FinallyS(T ) = �N [�e �T log(�e �T )� log(1 + �e �T )℄ (768)4.19 s/s01j1 Ts01j1 a).dQ = dU + PdV � �dN Sin
e dN = 0 (
ontainer is 
losed), U = CvT; dT = 0 (where Cv = JkT2 , J-numer degrees of freedom) and PV = NkT (ideal gas, N-total number of parti
les in the 
ontainer) total heat Q =NkT1ln(V2V1 ) < 0-the system gives heat. b). For the �rst 
ontainerdQ = CvdT +NkT dVV (769)For the se
onddQ0 = CvdT 0 +NkT 0 dV 0V 0 ; dV 0 = �dV; dQ0 = �dQ; V + V 0 = V1 + V2 (770)We want to maximize me
hani
al work R dV (P � P 0) = R dV Nk( TV � T 0V1+V2�V ). To do it we 
an maximize thedi�erential in the last formula treating T as maximal as possible and T 0 as minimal as possible. In the pro
ess we
onsider at �rst both 
ontainers had the same temperature. Then �rst 
ontainer started to expand and it's temperatureT de
reases, when se
ond de
reases it's volume, but in
rease it's temperature T 0. The 
ontainers ex
hange heat dQattempting to in
rease T and de
rease T 0 making them equal. But T 
ould not be large then T 0 sin
e at the moment,when T = T 0 heat 
ow stops. Thus system produ
e maximal amount of me
hani
al work if the expansion will be slowand 
ontainers will be able to 
atten their temperatures. Now we treat T 0 = T anddA = dV (P � P 0) = NkT (dVV � dV 0V 0 ) = JNkdT (771)Solving this equation one hasT = T1( V2VV1(V1 + V2 � V ) ) 1J (772)A

ording to previous equationW = JNk(T1 � T (V )) (773)Obviously maximal work will be done if we stop when the volume of both 
ontainers 
oin
ides 2V = V1 + V2. ThenW = JNkT1(1� (V2V1 ) 1J ) (774)
). Now we want to 
ompare Q and W . Let us introdu
e the variable x = V2V1 2 (0::1℄. Note that Q(x = 1) = W (x =1) = 0. A

ording to the hint we 
an 
onsiderdWdx = �NkT1x J�1J (775)and dQdx = �NkT1x (776)Sin
e dQdx < dWdx for any x 2 (0::1) and Q(1) = W (1) then W < Q for any x 2 (0::1).72



4.20 s/s01j2 Ta). We treat bound state of two biomole
ules as a new type of biomole
ules. Obviously 
hemi
al potential of themole
ule of new type is just a sum of 
hemi
al potential of the parts, shifted by bound energy. Then the grand sum isZ = ZA(T; �A)ZB(T; �B)ZC(T; �C )ZAC(T; �A + �C + �AC)ZBC (T; �B + �C + �BC) (777)We also assume that �AC and �BC are large enough so there are no pure C mole
ules and we drop ZC from thesum.We also believe that 
lassi
al (Boltzman) distribution is valid here and that the energy levels of biomole
ules donot depend on their type: they are very massive and large-thus only their position 
ould 
ontribute. (Generally we
ould also assume that partition fun
tion of boundstate is not equal to partition fun
tion of a part, but their produ
t.This 
ase des
ribes (almost) independent stru
tures.)Now (all partition fun
tions are the Boltzman summ of the form Z =PE e�E=T )NA = ZA(T )e�AT + ZA(T )ZCe�A+�C��ACT (778)NB = ZB(T )e�BT + ZB(T )ZCe�B+�C��BCT (779)and NC = ZAZC(T )e�A+�C��ACT + ZB(T )ZCe�B+�C��BCT (780)Generally ea
h Z 
ould be multiplied by Z0 (for 
enter of mass) but we absorb it to unknown Ni-number of parti
les.We absorb 
orresponding Z to � and havefA = 11 + e�B��A+�BC��AC (781)fB = 11 + e�A��B+�AC��BC (782)b). We already used �rst assumption about fA = 1 when �B !�1. For n
 we havenC = nA1 + e��C+�ACT + nB1 + e��C+�BCT (783)Sin
e we know that nC should mu
h smaller than nA and nB we 
on
lude that we 
ould drop 1 in the denominatorsand get for ffA = 11 + nBnA e �BC��ACT (784)
). Let �BC��ACkT = x. Then0:1 = 11 + 0:01ex (785)or x = log900 � 6:8. Using that 10000K � 1eV we have �BC � �AC � 0:2eV.4.21 s/s01j3 Ts01j3 a). Hamiltonian has a simmetry Si !�Si thus < Si >= 0. E�e
tive hamiltonian isH = NXi (S2i�1S2iln
sh(S2i�1 + S2i)) + Nln2 (786)b).Hamiltonian of single triangle isH = 12(S1 + S2 + S1�2)2 � 32 (787)73



Thus we have 6 = 3� 2 ground states, where 3 is a number of possible 
hoi
es of parti
le with spin opposite to othertwo parti
les and 2 is a number of possible spins of this parti
le. 
). Let VN be the number of ground states for thesystem of N triangles with given value of spin in the left bottom 
orner (obviously VN does not depend on this value).A

ording to b. �rst (at the left) triangle has 3 
on�guration of spins with minimal energy. ThusVN = 3VN�1 (788)And V0 = 1. Now we simply multiply this result by 2 as the number of di�erent values of the spin in the left bottom
orner. Answer:2� 3N (789)d). We 
onsider < SiSj >. Let i be a right 
orner of p-th triangle and j be the left 
orner of q-th triangle. Then thereare k = N � p� q full triangles between i and j (i < j). Now we want to 
al
ulate Wk(s)-number of ground states inthe system of k triangles with given boundary 
onditions: s = 1 if spins on the boundary 
oin
ides and �1 otherwise.We already know that Wk(1) +Wk(�1) = 2� 3k.From the previous spe
ulations (slightly generalize them) we 
an 
on
lude thatWk�1(1) = Wk(1) + 2Wk(�1) (790)and similarlyWk�1(�1) =Wk(�1) + 2Wk(+1) (791)Or the problem is equivalent of the problem of 
al
ulating 1 22 1 !k (792)The eigenvalues of this matrix is �1 and 3 with eigenve
tors 11 ! (793)and  1�1 ! (794)respe
tively. As a result Wk(+) = [3k + (�1)k℄ and Wk(�) = [3k + (�1)k℄. Finally< SiSj >= Vp(Wk(+) �Wk(�))Vq2VN = (�1)k3k (795)For k = 0 we get 1 as expe
ted.4.22 s/s01m1 Va) Consider the bla
k body radiation. From the Bose-Einstein distribution:d " = 
42d3ph3 "e h�kT � 1dS = 2��2
2 h�e h�kT � 1dSd� (796)From the extremum �max in the power spe
tra follows the relationh�max = �kT; (797)where 
1 is the dimensionless numeri
al 
onstant (obtained from solving the extremum equation).74



At the low frequen
ies the spe
trum has asymptoti
dE = 2��2
2 kTd�dS (798)The energy emitted from the area of the size of one wavelength, during the the time interval of the one period isdE = 2�kT d�� : (799)From this measurement one 
an �nd the Boltzman 
onstantk = 12�T � dEd� (800)and the Avogadro number A = Rk . After k has been found, from (797) follows the formula for h:h = �kT�max (801)b) Sin
e A is dimensionless, then whatever they mean by "pure thermodynami
s mean" one needs something thathas dimension of time to get the dimension of h = energy � time from the dimension of Q (energy). By heating abox with photons from zero temperature and measuring the heat input one gets the relationh = �VQ 8�5(kT )415
3 �3 : (802)The fa
tor V=
3 
an be expressed as �3 where � is a time for light to 
ross the box.4.23 s/s01m2 VThe 
anoni
al partition fun
tion at 
onstant pressure (we use notation P = �t, where t is tension, and V for thelength)1 =X eF�EnT =X e��pV �EnT (803)from whi
h follows� = �TN log�e�Ea+PlaT + e�Eb+PlbT � (804)and sin
e d� = �SdT + V dPV = ����P �T = N lae�Ea+PlaT + lbe�Eb+PlbTe�Ea+PlaT + e�Eb+PlbT (805)4.24 s/s01m3 Va) In the magneti
 �eld the parti
le with hamiltonianH = 12m �px � e
By�2 + 12mp2y (806)has energy levels of the harmoni
 os
illator Ek = �h!(n + 12 ) with ! = eBm
 . The 
oordinate of the 
enter of the 
ir
leis y = 
pxeB , the motion is 
on�ned into 0 < y < Ly if 0 < px < Ly eB
 . The number of su
h states g = Lx2��hLy eB
 .b) From the 
anoni
al grand distribution
 = �TX log(1 + e��EkT ) (807)in the low density regime we have
 = �TX e��EkT = �T V(2��h)2 eB
 (2�mT ) 12 e�� 1sinh �h!2T = �PV (808)75



thus P = T 1(2��h)2 eB
 (2�mT ) 12 e�� 1sinh �h!2T (809)from N = ��
d� one gets that at B = 0, 
 = �NT and from � = � �2
�B2 one �nds� = �16 NT � �hem
�2 (810)The gas is diamagneti
 (Landau).4.25 s/s02j1 Ta). Using thatP = ��F�V = RTV � b � aV 2 (811)we haveF = �RT log(V � b) � aV + f(T ) (812)Fun
tion f(T ) is unknown, but using thatCv = �U�T (813)and U = �T 2 ��T FT (814)we getCv = �T �2F�T 2 = �Tf 00 (815)or f(T ) = �CvT logT + 
T (816)where 
 is unknown 
onstant. EventuallyF = �RT log(V � b) � aV �CvT logT + 
T (817)b). Using the low of 
onservation of energy applied for small amount of gas traveled from one reservoir to another:dE = dU1 � dU2 = dA1 � dA2 = �P1dV1 + P2dV2 (818)Using that dPi = 0 we get dH1 = dH2 
).H = CvT + RTVV � b � 2aV (819)d). From b. we know that H = 
onst and this explains that�T = �V � �T�V �H (820)So Tinv is the temperature when � �T�V �H = 0 Using thatdH = 0 = dT (Cv + RTV � b) + dV (2aV � RT(V � b)2 ) (821)76



we have� �T�V �H = Rb(V � b)2 T � TintCv +RV=(V � b) (822)where Tint = 2abR (1� bV )2At the last step we will determine �V from �P . Using thatH(P; V ) = CvR (V � b)(P + aV 2 )� aV + PV (823)we obtain�V = ��P [V + CvR (v � b)℄[CvR (P � aV 2 ) + (P + aV 2 + 2abCvRV 3 )℄ (824)For relatively large pressure (PV 2 > a) volume in
reases and temperature in
reases/de
reases depending on T > or <Tint.4.26 s/s02j2 Ts02j2 a).Z = Z d�(E)ln(1 + 2
h(�BHT )e��ET + e 2(��E)T ) (825)N� = Z d�(E) e��E��BHT + e 2(��E)�BHT1 + 2
h(�BHT )e��ET + e 2(��E)T (826)b). When T ! 0 �! �F by de�nition of �(T = 0). ThenN+ = 4�V3(2��h)3 (2m(�F + �BH))3=2 (827)and N� = 4�V3(2��h)3 (2m�F � �BH)3=2 (828)
).N = N+ +N� (829)and M = (N+ �N�)�B (830)d). � = 3N�2B2�F (831)4.27 s/s02j3 Ts01j1 a). E = �hwMS = klnW (M )b). System is isolated, in the Stirling approximationn! � p2�nnne�n (832)S = klnW (M ) = k[(N +M � 1=2)ln(N +M � 1)� (M + 1=2)lnM +Const℄ (833)77



Then, by de�nition1T = dSdE = k�hw [ln(M + N � 1M ) + 12(M + N � 1) � 12M ℄ (834)We also assume that N;M >> 1. ThenMN = 1e �hwkT � 1 (835)as expe
ted. To get the same result through Boltzman partitions it is 
onvenient to noti
e that1Xn1=0 ::: 1XnN=0 Æ(M � NXi=1 ni) = (N +M � 1)!M ! (836)In this way our partition sum isZ =XM e��hwMkT W (M ) = 1(N � 1)!(e �hwkT � 1)N (837)Then < M >N = < E >�hwN = d logZ�hwNdT�1 = 1e �hwkT � 1 (838)
). StraightforwardlyCv = dEdT = �h2w2NkT 2 e �hwkT(e �hwkT � 1)2 (839)d). This was already derived in b). Now we give alternative derivation using Boltzman partition. At �rst we notethat instead of 
oordinates E;M where S = lnW (M ) in 
oordinates T;M entropy is S =PP lnP orS = �k 1XM=0 W (M )e��hwMkTZ ln[e��hwTZ ℄ (840)whereZ = 1XM=0 e��hwMkT W (M ) (841)This sum 
ould be sum up:S = k(lnZ + 1XM=0 W (M )�hwMe��hwMkTkTZ ) = kd(T lnZ)dT (842)We want to 
he
k whetherdSdE = dSdT dTdE = kd2(T lnZ)dT 2 dTdE = 1T (843)Or in another wordsd2(T lnZ)dT 2 = dEkTdT = dTdT T 2dlnZdT (844)a

ording to the de�nition of E = k T2dlnZdT . Butd2(T lnZ)dT 2 = dTdT T 2dlnZdT = 2dlnZdT + d2lnZdT 2 (845)is just the trivial identity!e). Any parti
ular 
on�guration 
ould be imagined as the row of obje
ts: bosons and os
illators. Then all bosonsto the left of any parti
ular os
illator (up to the next os
illator) belong to it. Thus no bosons should be to the right ofthe "rightest" os
illator. We assume that number of the "rightest" os
illator is N -the number is not important here78



be
ause a

ording to our assumption all os
illators are equal to ea
h other. Then number of series of M bosons andN � 1 os
illators (the last is already on the right side) is just (N +M � 1)!. But here all obje
ts are equal. We haveto dived this number by number of permutations of bosons itself M ! (without 
hanging the series) and also os
illators(N � 1)!. Result isW (M;N ) = (M + N � 1)!M !(N � 1)! (846)4.28 s/s02m1 Ts01m3 a).�(h) = �0e�mghT (847)Derivation: we assume that gas is 
lassi
al (governed by Boltzman statisti
s). Then using that � doesn't depend onh and that "e�e
tive" �(h) = � �mgh we derive the dependen
e N(h)V assuming that we 
onsider very small volumewhere we 
an negle
t the dependen
e of potential energy mgh on height h. b). This is usual Maxwell distribution (itdoesn't depends on h up to normalization )F (p) = e�E(p)T e�(h)T (848)
). Under stri
tly ideal (not 
lassi
) gas we have to understand gas governed by bose (fermi) statisti
s. Then e�e
tive�(h) is still the same, but dependen
e �(h) is more 
ompli
ated. It is the fun
tion, whi
h expressed total number ofparti
les through 
hemi
al potentialN = dlnZd� (849)with substituted e�e
tive potential �(h) = � �mgh. Nevertheless this fun
tion is not elementary for both B and Fstatisti
s.F (p) remains the same (up to normalization). It isF (p; h) = e�E(p)+�(h)TZ(T; �(h)) � e�E(p)T (850)d). The same up to normalization 
onstant whi
h is the ration of densities at bottom and at the top. How to 
al
ulatethe densities is explained in 
.4.29 s/s02m2 Ts02j2 a).Using approximation of Boltzman gas: total number of protons is (E0 = 13:6 eV)NpV = �MpT2��h2�3=2 e�pT +�MHT2��h2 �3=2 e�p+�e+E0T (851)and ele
trons isNpV = �MeT2��h2�3=2 e�eT + �MHT2��h2 �3=2 e�p+�e+E0T (852)From this moment we will treat Me << Mp and thus MH = Mp. We know that at the temperature T0 = 0:3eVnumber of atoms is equal to the number of free protons. Or�MHT2��h2 �3=2 e�pT = �MpT2��h2�3=2 e�p+�e+E0T (853)Thus �e(T0) = �E0. To determine both quantities NeV and NpV we need on
e more equation.How to get it? 79



Let us remind that our Universe is ele
tri
ally neutral. And that is why the next equation isNeV = NpV (854)This is not a result of statisti
al physi
s, but new assumption about system we 
onsider. Using this one 
ould simplygets NeV = NpV = 2�MeT2��h2�3=2 e�E0T (855)We learn that our approximation is 
orre
t sin
e the density we deal with is e�E0T � E�45 times (!) than 
riti
al one.Density of free ele
trons is equal to density of free protons and to the density of Hydrogen atoms and is Ne2V b). FromPlank formula density of photons isNphV = T 32�2
3�h3 Z 10 dxx2ex � 1 (856)Let us 
ompare Ne and Nph. Roughly speakingNeNph = meT 3=2e�E0=T (857)At T = T0 = 0:3eV we haveNeNph � 5110:3 3=2e�45 � �104 � 10�20 << 17 (858)Or Ne << Nph.4.30 s/s02m3 Ts02m3a). S = log gwhere g is a number of mi
rostates with given energy. At the zero temperature energy is also zero. If S 6= 0 thenthere are more than one ground states of the i
e's hamiltonian. This is of 
ourse possible, but unusual.b).There are 2N bonds (this 
ould be get by simple 
ombinatori
s, but also from main formula of 
hemistry H2O)and ea
h bond has exa
tly 2 quantum states. Result g = 22N and S = 2N log 2
). Let us 
onsider one parti
ular oxygen atom (and bonds end on it) and forget about all others (a

ording theassumption). There are 24 states of su
h system if we want to take into a

ount all other bonds as well). The numberof 
on�gurations, when exa
tly two of hydrogen atom are 
lose to this oxygen atom are 6 = 4!2! (bonds are di�erent,no matter in what oder we will sele
t them). Fra
tion is624 = 38 (859)Now g = N2 log6 (860)My result is twi
e larger than Pauling's!!!!!4.31 s/s03m1 TTdS = dQ = dU + dA (861)where dA = �fdx. When x is �xed dA = 0 andTdS = dQ = C(x)dT = dU = �U�T dT (862)80



or C(x) = �U�T (863)and thusU = A(x)2 T 2 + g(x) (864)where g(x) unknown arbitrary fun
tion.At the 
onstant zero temperatureTdS = dQ = 0 = dU + f(x; T = 0)dx = [g0 � f(x; 0)℄dx (865)thus g = �2x2 +Const (866)Now U = A(x)2 T 2 + �2x2 (867)After we have determined exa
t form of U (up to additive 
onstant) we 
an 
al
ulate S:TdS = dU � fdx = dT [A(x)T ℄� dx[�A0(x)2 T 2 � �T + �xT ℄ (868)Let us divide both sides of these equation by T . Now for the right side to be full di�erential following property of Sshould be satis�ed�2S�T�x = �2S�x�T (869)or A0(x) = A0(x)2 (870)or b). A0 = 0 and A = 
onst!a).�S�x = �� �x
). �S�T = AS = AT + �x� �2x2 + B (871)d). Zero tension f = 0 = �x� �T + �xT ) dx[�+ �T ℄ = dT [�� �x℄CF = T ��S�T �f=0 = T [�S�T + �S�x �� �x�+ �T ℄ = (872)CF = T [A+ (�� �x)�� �x� + �T ℄ (873)Using that f = 0 implies x = �T�+�T thenCF ℄ = T [A+ �2�2(�+ �T )3 ℄ (874)81



4.32 s/s03m2 Ta). Sin
e we assume that density is uniform we substitute the spheri
al star by a 
ube of size L with periodi
 boundary
onditions. Than k = 2�neL and total number of ele
trons N should be equal to 4�3 n3e, whereEf = �2�neL �2 12m = 1m �3�2NVp2 �2 (875)And total kineti
 energy isE = Z ne0 dnn2 k22m = 3(2��h)2N10m �3N4� �2=3 (876)b). Solving the equation�R(Uk + Ug) = 0 (877)we simply �ndR = (2��h)225=2m5=2p meG � 34��4=3M�1=3 �M�1=3 (878)
). ne remains the same. Ef now is equal toEf = 
ke = 
2�neL = 2�
� 3N4�V �1=3 (879)and total energy isE = 4� Z ne0 dnn2
k = 3(2��h)
N4 � 3N4�V �1=3 (880)d). This 
ondition is Uk < Ug (this 
ondition doesn't depend on R). It yieldsM 22 > 5(2��h
)821=3m5=3G � 34��2=3 (881)4.33 s/s03m3 Ta). Sum for 
lassi
al parti
le isZ
l =Xn e�ET (882)Here n is a set of quantum numbers n1; n2; n3 whi
h spe
ify quantum state of parti
le byki = 2�ni�hL (883)and V = L3. Then partition sumZ
l = 1Xn1=�1 1Xn2=�1 1Xn3=�1 e�ET (884)
ould be substituted by integral over dn. Really using variable k instead of n we will get at �rst sum over latti
e withs
ale 2��hL and if m and T �nite sum goes to integral as s
ale of latti
e approa
hes zero.Taking this gaussian integral now we will haveZ
l = Z d3ne�EnT = V=�3 (885)as expe
ted. b). 82



Going ba
k to the sum we haveZ = V�3 X e�x2 (886)where we sum over 3D latti
e with size (roughly) �hLpmT . The sum 
ould not be substituted by integral if the fun
tionwe want to integrate 
hanges suÆ
iently at latti
e s
ale. Exponent 
hange suÆ
iently if x 
hanges by 1 and ourapproximation breaks if �hLpmT � 1 or large. ResultT <� �h2mV 2=3 (887)
). Two parti
le partition sum for quantum parti
les di�ers from the same sum for 
lassi
al parti
les be
ause in thequantum 
ase parti
les are identi
al.Thus for bosonsZB = 12 Xn6=m e�EnT e�EmT +Xn e�2EnT (888)for fermionsZF = 12 Xn6=m e�EnT e�EmT (889)Using that Thus for bosons2En(m) = En(m2 ) (890)we havefor bosonsZB = 12Xnm e�EnT e�EmT + 12Xn e�2EnT = 12Z(m;T )2 + 12Z(m2 ; T ) (891)for fermionsZF = 12Xnm e�EnT e�EmT � 12Xn e�2EnT = 12Z(m;T )2 � 12Z(m2 ; T ) (892)d). Using expli
it form of ZZ(T; V;m) = V�3 (893)E = T 2 d logZdT = 32T [1 + 11� Z�1(m; 2T ) ℄ (894)C = dEdT = 32[1 + 11� Z�1(m; 2T ) ℄� 9Z�1(m; 2T )4(1� Z�1(m; 2T ))2 (895)As was expe
ted (thanks to Daniel) at the 
lassi
al limit Z !1 the pure 
lassi
al result restores.
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