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1 Classical Mechanics

1.1 m/m98j1 V

The action with Lagrange term for constraint included is

/ y\/l—i—yzdx—/\(/ \/l—i—yzdx—L)

The conserved quantity, charge corresponding to the translations along = axis is

. oL
H=py-1L, p=5o

)
S0
y
=(y— ) —.
p=(y-A) T
Up to the constant term,
1
H=—(y—A)——.
(y—=2) =

After expressing y = f(y) and integrating, one gets
T
= A+ Hcosh —
Y + H cos IR

and the length condition

/0\/1—1-3'/2:/0 cosh%dx:Hsinh%:L

1.2 m/m98j2 V

Let the first particle is at distance r and the angle « from the center of mass (its motion decouples). Then, the

Lagrangian is
k
L= 220247 4 72 — = (2r — 2ro)?
2 2
The momentums are

pr = 2mr, pa = 2mrla

(7)



and the Hamiltonian 1s

p3+pi

H =
4m = 4dmr?

+ %4]{7(7“—7“0)2 (9)

The angular momentum p,, conserves and equations for o decouple

_OH 1

P = const, o= e Sy (10)
while for
a. radial component
OH 1
= — = —P» 11
" Opy 2mp (11)
. OH 2
2mi = p, = o = 24mr3 —4k(r — 7o) (12)

b. The system will oscillate between two turning points. They first one is just the initial point, the second is
determined from equation for vanishing kinetic energy in that point
2 2
Po __ _Pa +2k(r—r0)2 (13)

dmrz  Amr?

Form small v one has small p, and as a result

1 mu?

Al =2(r — = - 14
(= r) = 5, (14)
where rp = /2, and v is initial velocity in the lab frame.
1.3 m/m98;3 V
The equations of motion are
¥ =g — Nsinwlt (15)
i = N coswt (16)
¥ = &tanwlt (17)
With an anzatz N = Asinwl one gets
i=g— Asin’wit (18)
i = Acoswtsinwt (19)
Y = & tanwlt (20)
Then,
: 1 A .
r=gt— §At + 1, 5in 2wt (21)
and
A
Y= E(l — cos 2wt) (22)
All equations are satisfied with A = 2¢ and
g
r= 4('0—2(1 — cos 2wt) (23)
y= L(?wt — sin 2wt) (24)
4w?

That is cycloid.



1.4 m/m98ml1 V

From equation for forces at an infinitesimal patch of circle dT" = —uT'd¢ follows T' = The™#? = mge "% .

1.5 m/m98m2 V
We consider case, when the horizontal line lies in the same vertical plane as a circle, below it.
1 1
L= g™ ((rd)2 + i‘z) + mgrcos o — 5]{7 ((l‘ —rsina)? 4 (a — rcos oz)z) (25)

for small deflections, where y = ra, gives the canonical kinetic term and the following bilinear form for the potential

( _kk @ ) (26)

with the eigenvalues

A= g (ko k) £ VT RDE AR - R)) (27)

term

where ky = M‘tﬂ and frequencies w? = %

1.6 m/m98m3 V

a.

v=1/2gh = 4.5m/s’ (28)

b. Balloon is inclined in the direction of the acceleration with the angle tan @ = g =0.1. c.

My M
— = H H=—=3 29
5 = r9H, 5 =3 (29)
d.
o
AP = 4E = 20Pa (30)
e. Since
1
Vv = ;Vp (31)

and > v; = 0, where v; are incoming velocities,

Z(pz - pcenter) =0. (32)
Then

1
Peenter = 1(204 + 1)]7 (33)
it should be greater than p for the flow to go out. Therefore
3
- 34
o > 5 (34)

1.7 m/m99j1 T

m99j2MLg:tg9
R=b—asinf

Mw?R=F and T = 2 Thus T = 27, /b=asiné
w gtgl



1.8 m/m99;2 T
m99j2 r? = % + y? Lagrangian is

L= %[rzq/;z + 7% — mg\/r2 — R2 (35)

Equation of motion mr?w = L = const (¢ = w) and

. 2 mgr (36)
mr = p— o

The stationary orbit is when 7 = 0 and r? = r2 = R? + g?w~* Equation of motion for small fluctuation & = r — rq is

£4+9Q%=0

R?w*
p ) (37)

QF = w?(3 -
The oscillations are unstable if Q% < 0 or when (here we substitute expression for w from formula for rg)

4
ré < 3RZ (38)

1.9 m/m99;3 T

m99j2 Forces acting on the element of rod from z to « + da (» € [-L/2..L/2]) all together gives zero result:

dem(R + z)w? B demMG
After integrating one gets
M 2)w?
T(2) = mMG _mx(R—l—x/ Jw L C (40)

" L(R+=) L

The condition that total gravitational force is equal to total centrifugal force is T(L/2) = T(—L/2). Solving this
constraint we will find w? = MG/R(R? — L?/4), and after substituting this back we will have thee following result
for T'(x)

mMG  mMGz(R+ z/2)w?

@) = —T(R+a) ~  LR(R = 2/a)

+C (41)

Now we will use condition that at the end of the rod there should not be any tension (end of the rod is massless). Or

T(L/2)=T(—L/2) = 0. This gives
mMG(R* + L?/8)

C= RI(R =174 (42)
Now we can calculate T'(0)
MGL
T(x=0)= M (43)

~ 8R(R2— L%/4)

1.10 m/m99m1 V

From conservation of an angular momentum there is a rotating frame in which ball moves only in the vertical direction.

Let the frame ’bar’ rotate with Q counter clockwise.

Wy = wg cos Ut — wg sin Ot (44)
Wy = wg sin QF + wy cos 2 (45)



(the same relation between any ’bar’ and lab vector components). Then acceleration-force equations of motion in lab

frame:
m(vf — er) = Nf
mv, = —-mg + N,

and angular momentum-angular acceleration equations of motion in lab frame

J(.‘dz = rNg
Jwe = rsint N,

Juwy = —rcos N,
can be rewritten into ’bar’ frame
J(.‘dz = rNg

Since Ny =0
R

(.L)Z:O, WZ:—Q?.

Substituting v, = rwg in the (?7) one gets

J (g + Quz) = —r(mr?

Wy — mgr)
and then
j(.r)g—i—JQng:O, j:J+7’TL7°2

with oscillating solution

wg = Bsiné&t,
where ¢2 = QZJ_I_#. From wz(0) = 0 one gets
mygr
B=——-—"—
(J + mr?)¢
which determines
2
vy = rwgsint = —% sin £t
and
2
mygr 5 ¢
= —m(l — COSgt) = _iﬁ(l — COSgt)

The ball will be oscillating between two horizontal lines.



1.11 m/m99m2 V

The potential %2 has the same form as an effective potential for a particle moving along radius due to its angular
momentum. Therefore (for the effective scattering particle, in the central coordinate system, where ¢ = 7 is zero
scattering), given

m,. ME

_(rz =+ 20 =+ ﬁ) = EO (63)

2 mZr2 2

and rewriting

Mod?“ 1
6= / T (64)

2
2B, M2+,6m2 mr

one can immediately find the answer without integrating, just from comparison with a freely moving particle

MZ
¢= MZ + mp? (65)
(Here My and m are for the effective particle, m = m.zy = n:zl_l_”;% and My = bvmesy, and mey; = %M)
The incoming light particle (which is 2 times lighter), will scatter in the lab frame at the angle
fanf = —; sin ¢ (66)

—%+ Zcos(m — ¢)

1.12 m/m99m3 V

a. From the functional for the energy

LZ/éﬂﬂMﬁv1+(MV+pm0 (67)

in the limit ¥ — 0 one gets the stationary equation

d
T (z7y’) = zpg, (68)
with solution
©*pyg

b. Including dependence on time in lagrangian with zero angular mode, one gets

1
L= /27rxdx§(p(3ty)2 — 7(0:9)?) (70)
with the standard equations of motion for cylindrically symmetrical waves
Oe(xpOry) — Oy (x7y) =0 (71)
Plugging y(z,t) = y(z)e!“! one gets
dzy 1 dy
Q?y=0 72
de? ' zdx + (72)

where Q7 = %
Its solutions are given by Bessel functions. With z = Qx the equation becomes canonical and the answer is

y = Jo(Qx). Let ¢g is the first root Jy(eg) = 0, then

w=4]—= (73)



1.13 m/mo00j1 T

mO00;j1

Let afz) be the angle between the tangential line to ark (at point #) and horizontal line. Obviously tga = ¥/.

nde
cos o

Then the mass of the element of ark from « to & + dz is dm = pdl = . Let us N be the normal (no gluing-no
tangential) force in arc. Then N =iNcosa + yN sin a. The element of arc is in rest. As a consequences the sum of
all forces acting on it is zero. These forces are: normal force at the one end ( at #), normal force at another end (at

z + dx) and gravitational force.

Ncosa(x+de)— Ncosa(x) =0 (74)
Nsina(z + de)— Ncosa(x) + dmg =0 (75)
Or
Nsina(z) = C = const (76)
and thus
Hyg
1 ! =
(Ctga)' + p— 0 (77)
As a result
pgdr  da
C ~ cosa (78)
and then
_pgde _d(y) (79)
VSO
Integrating this we get
v = sh(“Z (2 = a0)) (80)
At last
¢ ng
= esh(E (e — 81
/=S eshE ) 1)

Arc has form of so-called chain-line (csh). C has sence of horizontal force in arc.

1.14 m/mo00j2 T

m00j2 Let ¢(t) = 7 — 0(t) and ¢ = ¢(t = 0) And also let [ € [0..L] be the coordinate along one rod, such as { =0 is

a free end (on the floor) and [ = L is a tied end. Then the coordinates are

z(l) = (L =1)cosp (82)
y(l) =lsingp (83)
v? = &2 4 F = 1% 4 sin? p(L? — 2L1)] (84)

The kinetic energy of one rod is

L 2.2
dl L
E :/0 L (85)

2L 6

Energy conservation low says

mLZp? n mglLsing  mglLcos0

6 2 2 (86)

10



a). The moment just before the rods touch the floor is when ¢ = 0. This time & = 0 since it is proportional to sin ¢.

Thus the velocity is vertical and equal

Locosp = +/3gL cos b (87)

b). Now we will find the force between the tied ends. Due to the symmetry these force (F) is horizontal, and this is
only one horizontal force acting on the rod. According to the seconds Newton’s low, applied to the center of mass of

the rod

F(t) = mi(t) (88)

We know the dependence z(t) = x(¢(t)) and ¢(t) = ¢((t)) (energy conservation low). Thus (t) = $? dd;x(go) +
%x(gp)%gb(gp)gb The second term gives no contribution since %x(gp) proportional to sin ¢ and vanishes when ¢ = 0.
And the contribution of the first one is

. 3

e=0)= 7g cosd (89)
Or, finally

F= smg cosf (90)

1.15 m/mo00j3 T

m00;3
Let r be the distance between the hole in the table and mass ms. Then the largarngian is
1 : .

L= 5[(m1 + mo)#? 4 mar?p?] — mogr (91)
Equations of motion are

mirip = L, = consl (92)

2
(m1 4 ma)i = —mag + mlig, (93)
mag

The equilibrium position is ry = where w = ¢. We want to consider small oscillations of variable & = r — rg.

w2

Expanding up to the first order in & the equation of motion for rwe will get
£+9Q°%¢=0 (94)
where

3L2
0? — v _ 3my w? (95)

ma (m1 + mz)ré my + ma

We know that the orbit is closed (= 2 = wn)and there is only one minimum (maximum) per period (= n = 1). Thus

mo = 2m1

1.16 m/mo00ml V

The potential is (a)

1 do 11 _ GM 1
G- [ = Mo [ 0 2ecoso 02702 = DL (14 10+ 01), (96)
where x = %, and (b)
GM 3 r?

11



To find small oscillations consider the Hamiltonian form with

po=mR’6,  p,=mR, (98)
and
2 2 2
P by GMm 17r
H= - |14+ == 99
2m  2mR? R + 4 R? (99)
The stationary point for » motion corresponds to
2 2
by GMm 3r
= 14+ -— 100
= w (+ik) e
Plugging it in the effective potential term, and taking the second derivative, one finds
0’V GMm 3 r?
— = — - 101
OR? R3 ( 4 Rz) (101)
Then,
“r g3y (102)
We 4
and
3 9
A¢ = 271'11‘ (103)

1.17 m/mo00m2 V

Let 6 is an angle between the line from the corner to the center of the ladder and the floor. Then from conservation

of energy

. J.
%927“2 + 592 = mgr(sin 6y — sin f) (104)

one find the relation between 6 and f, and also equation of motion for ¢
mgr

Jery

0=

cos 6 (105)

The 2 coordinate of the center of mass moves with an acceleration
i=—fOrsing — 0%rcosf (106)

When the ladder separates from the wall = 0, thus

mgygr

rcosf.sinf, — 937“ cosfl. =0 (107)
eff

and the result for critical angle is

2
sinf, = 3 sin g (108)

12



1.18 m/mo00m3 T

Lgrangian of our system is
L= %[Rzéz + w?R?sin” 0] + mg R cos 0 (109)

Using that w? = £ we obtain the system with effective potential energy of the form

1
U:—%[COSH+§SiH29] (110)

and with kinetic energy %92 Now the period of oscillations with amplitude 6 is

[4
dt
() :4,/5/ (111)
29 Jo \/cost—cosﬁ—i—%(Sinzt—sinzg)

Expanding near zero, treating ¢,0 << 1 we get

8 R [ dt
T(&):aﬁ/om (112)

1.19 m/mo01j1 T

m01j3 As usual we use cylindrical coordinates and

L= %[7;2+r2q;2] —mgz (113)
Here z = —bcos ¢ and r = a + bsin ) Angular moment conservation low gives
mr?w = L + const (114)
where w = q/) Circular orbit corresponds to the angle 4y such as tgiy = %. Equation of motion in the terms of
7 18
L? dz
s o az 11
mi= g —meo (115)
And frequency of small oscillations 1s
d’z g
92:3 2__:3 2 116
s dr? s b cos® g (116)

1.20 m/mo01j2 T

m01j2 The most important quantity in this problem is the angle between line, which tangential to the Earth’s surface

and the line, which is tangential to the radius. If we will drop second order in ¢ we can treat %%l also as a small
quantity and drop it’s second order as well. Then this angle « is just equal to a = —%%l (Minus here is due to the
sign of d¢). The centrifugal force on the surface is

F = mw?r(¢) cos ¢ (117)

and directed to the axis of Earth’s rotation. Together with gravitational force myg, directed along the radius this force

should form the force just perpendicular to the surface. Using ”sin” theorem we get

sin o () _ sin(¢ + a(¢))
F myg

(118)

(note that here g depends on ¢). We will drop second order of a and the natural dimensionless small parameter will be
o(re)
we will have

. Expanding in this parameter we can neglect the dependence in g on ¢ and o in sin(¢ + «(¢)). After integrating

w?r, sin? ¢

2g(re)

2 2
_ w're _ 3w
Thus € = S90r) = 5xGp

7“:7“8(1_ g(re)) )) (119)

O((

13



1.21 m/mo01j3 T

mO01;3
Let the (constant in time) angle between conserved angular momentum and axis of Earth be ¢, angular frequency

of rotation is w and precession frequency is 2. Since no forces act on the Earth angular momentum

I(t)i; = (Omega(t) + w(t))! = M; = const (120)

Let us consider moment t. Let choose the cordinate system in the way that M has only z projection and center of

Earth has zero y coordinate. Then

M = 1{0,0, M} (121)
Q=1{0,0,9} (122)
w = {wsiny, 0, wcos i} (123)

In the coordinate frame | corresponding to Earth

Q={-Qsiny,0,Qcosp} (124)

w=10,0,w} (125)
In this frame

1@+ w) = {~ Ly Qsin g, 0, Lo (Qcos & + ) (126)
Going back to the inertial frame ,

I(Q+w) = {—LQsinyp cos ¥ + L (Qcos ¥ + w)sin i, 0, cos 1, (Qcos yp + w) + Lo Qsin® ¢} (127)

Now we have to satisfy our assumption about direction of M. As a consequences

0=—I,;Qsintpcos ) + I, (cos ¢ + w)siny (128)
And
—w
Q= 129
€cos ) (129)
where
Izz - Ixx
=== 27 130
T (130)
Remark (V)
1. If one expresses the answer in terms of . — angular momentum, the result is 2 = % What is called by the

angular velocity of precession — is the angular velocity of rotation of the axis of the current angular velocity around
the fixed direction in space along the angular momentum (which remains the same) in the inertial coordinate system
(relative to the stars). The precession in this sense is slow when I, > I, (rod) and is approximately the same as the
current angular speed of rotation for a sphere-like object I, ~ I,.

2. By guess, in the problem they ask about estimation of some other quantity (what is confusing with common
definition) — the angular velocity of rotation of the axis of the current angular velocity around the fixed direction
attached to the Earth, that is — in rotating coordinate system of the Earth. From conservation of the angular

momentum L written in the rotating «, y, z-coordinate system attached to the Earth we have

L+wxL=0 (131)

14



where w is the current angular velocity (as physical object it is defined with respect to the coordinate system of
stars, and by definition it is the angular velocity of rotating x, y, z-frame), but ezpanded in the x,y, z-Earth connected

coordinate system. That results

Iy—IZ . Iz_lx . I@'_Iy
= I Wy Wz, Wy = Iy Wele, Wy = I,

Wy Wely, (132)
For O(2) symmetrical body we have I, = I, and thus w, () = const = w.p and the remaining equations become linear

Gy + (ews0)*wy = 0 (133)

with the harmonic solution having frequency Q = ew.(, which describes slow rotating of the current axis of angular
speed around the z-axis direction (which is attached to the Earth!, and which is itself rotates with approximately

1-day period around the fixed direction of the angular momentum relative to the stars!!).

1.22 m/mO0lml T
a).

0=dF =dxpg+T(x+de)—T(x) (134)
Thus

oT

= —pyg (135)
But

T(z) = I(L(g—i -1) (136)
Result:

nw_ _PY

5= KL (137)
Or

S(x) = a+bx + cx?/2 (138)

From the equation we have ¢ = —£Z%. Since S(0) = 0 a = 0. We also know that 7(L) = 0 and thus
KL

P9
b— —1=0 139
K (139)
Finally
2
I T
So(x) = w + —=[e + 7] (140)

b).The wave equation (as usual) has form

S — 28 =0 (141)
where v? = %. The general solution is
S(z,t) = f(x —vt) + g(x + vt) (142)

At the moment ¢ = 0 S(z,0) = Syp(z). Hence
f(@) +g(x) = So() (143)

(here # > 0). Also at the moment ¢ = 0 velocity is equal to zero:
flx) =g (x) =0 (144)

15



for x > 0. Result: for x > 0
1
(@) = ¢'(z) = 55() (145)

The last job is to determine f(z) for # < 0. Using that S(0,¢) = 0 for any ¢ we can define f(z) for negative z as

f() = —g(=2) = —gSollal), 2 <0 (146)

Now f(x) is a smooth function.

1.23 m/mO0lm2 T

When particle cross the point # = 0 with very small energy time increases logarithmically. If the energy of particle
is I/ then using energy conservation low (it is violated only very slightly and during one period we can use it without
changing F)

-2
E= % — ax? + bt (147)

For small z
2
= —\E+ azx? (148)
m

and time of crossing is

_ (A 2
T(mo)_/o o m\/algE (149)

Since after E < 0 the period reduces twice because the path reduces twice we approximately have
E(#) ~ (ip — ) (150)

for 1 < 75 and
1
E(i) ~ 5(2 — iy (151)
for 1 > 1.
Thus for 7 < iy

2 .
T~ o log(i — 4y) + const (152)
and
1 ..
T~ log(i — 4y) + const (153)
my/a
for 1 > 1p

1.24 m/mO01lm3 T

We will solve part b. and then will get result for a. substituting 8 = 0. Let us introduce variable z = y + ¢z. Then

the equation of motion will be

2+(ﬁ—i%)z’:g (154)

Initial conditions z(¢ = 0) = 0 and (¢ = 0) = 0. The solution is

. 2

_ img myg (1B _pyt
t) = t 1-— m 1

(1) gB + imp + (¢B + imp)? [L—e ] (155)

16



and
myg

M g
qB—i—imﬁ[l e ] (156)

(1)
a). 8 = 0 This motion is the simultaneous circling and shifting.
b). In the case g # 0 radius of circling decreases and the motion became shifting with final velocity q;fiiiw.
¢). The drag from b. changes the value and direction of shifting. In the case of radiation the direction and velocity
of shifting coincide with the results from a. The final velocity 1s just the velocity of shifting.
To get this result we add the term aqill:—gf (a-some real number)to the equation of motion. Then the velocity
depends on the time as
i) = _Z;”—Bg + L — %] (157)

We have no idea to specify vg. More interesting to find Q

oo 1—4/1—4aq(*2) (158)

2aq

When o = 0 we return to the a. case. When a # 0 we would like to note that
Q<0 (159)
Thus velocity (and radius of circling decreases in time). The imaginary part is different from a. case- the frequency

of circling is not the same as without drag.

1.25 m/m02ml1 T

a).z = rcot a

52

L= T[ .rz + r2¢%] — mgr cot a (160)

2 "sin”

Equation of motion
mr’é = M = const (161)

and
m 2

F=— t — 162
e ar mg cot o + - (162)

b).If # = 0 then
w? =L cot?a (163)

20

c).Expanding we have Q% = 3w?sin a

1.26 m/m02m2 T

a). Let p be T The Lagrangian is

1 L
L=3 / dtdz[py* — 1y* + My*(x,1)6(x — L/2)] (164)
0
Equation of motion 1s

py(z,t) — 79" (z,t) + My(L/2)6(x — L/2) =0 (165)
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This equation could be separated for two

b= (166)
where v? = * for @ # L/2 and

My(L/2,t) =7y’ (/2 +0,t) — ¢ ({/2 = 0,1)] (167)

Boundary conditions for # = 0 and = L: y = 0.

We would like also to note that frequency (and thus wavelangth) to the left of mass and to the right of mass should
be the same for y(#) be smooth for any moment ¢ in the center # = L/2.

Anzate: (w?(k) = v?k?) for < L/2

y = Apsin(w(k)t + ¢) sin(kz) (168)
for @ > L/2
y = Ap sin(w(k)t + ¢)sin(k(L — z)) (169)

Now we preserve smoothness of y(z). But there is also exception when y(L/2) = 0 for any ¢:

2mn
k= — 1
i (170)
Then y could be
y = Apsin(w(k)t + ¢) sin(kz) (171)
for # < L/2 and
y = —Ap sin(w(k)t + ¢) sin(kx) (172)
for @ > L/2
Even in this case dependence on time (and n) from both sides should coincides to satisfy equation for Mg = ...
Now the equation of motion for mass M yields
kL kL
Muw? sin(T) =27k COS(T) (173)
Let us denote % as . Then equation is
tan & = 5% (174)

In the exceptional case (k through n) the equation for mass M already satisfied. This is just static wave with knot
in the point L/2.
b). We did this. But except this there are such a solutions when M = co.

c). At M =0 we ha(ve equation tg¢ = infty and k = w
2nm

Plus exception k = ~
At M = co we have equation tgé = 0 and k = ZTLL—” This is the same wavelength as exceptional mode has (it should
be added in the case M = oo) but the amplitudes Ay in the RHS and LHS of the string has the same or opposite
value correspondingly.
d). The first for frequencies (starting from M = o0): two symmetric and two antisymmetric relatively center

(z = L/2). Thus for each mode in the LHS we have two modes for system at all. Two modes in the LHS

2mne

y = sin(w(n)t + ¢) sin( ) (175)

andn=1,2.
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”

When M changing from oo to 0 antisymmetric doesn’t change! The symmetric modes are 7 sliding along tgh
graph” (see equation derived before). Their momentum k increase and for finite M they looks like:

n = l-back of two-humped camel. Each hump increase and became from part of sin from 0 to 7 into part of sin
from 0 to %ﬂ'

The same happens with n = 2. But for M # oo the symmetric mode is not fourth any more- the zero mode at
M = oo (just constant mode) start ” sliding along tgh graph” and goes to "one-hamped camel”. Each side of hump

in the end of the story (M = 0) became to sin from 0 to /2.

1.27 m/m02m3 T
a).

) ko,
=qg—- — 176
V=g mv (176)
Solution
™ anh | ¥4 (177)
v=,4/—=tan -
k m
b).
U = cos Awv (178)
Solution

k
u = cos A\ logcosh 4 / “9y (179)
k m

v |22 (180)
k
u—)wt,/%cos/\ (181)

1.28 m/mo02j1 T

c)

Let us the distance between the y = 0 plane and mass M be h. And the angle between the horizontal line and stick
of length 2¢ be ¢. Then the constraint for this system is

b? = (a — ccos ¢)* 4 (h + csin¢)? (182)
Potential energy of this system is
U=-2Mg[h+ csin ¢] (183)

Equilibrium point is dU = 0 or (using constraint)

cos ¢ = a4 (184)
c
hg+ csingg = b (185)
and also
d¢ 1
a0 =3 (156)
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Now second derivative of U with respect to h at the equilibrium point:
d? c .
U’ = —2Mg[ad—hq; — gsin éo) (187)

Let us find %. Using constraint one could simply get

2
0= (14 ecsing)? + (ccos (b%)/(csinqb —a) + (z + csin ¢)[ccos (b% —csin ¢ (%) ]+ (ecos (b%)z (188)

At the equilibrium point this yields

d’*¢ hoe .
W( 0) = ESIH ¢0 (189)
Eventually
2Mgce[b— h
o gz[az o] (190)

Now we will find the kinetic term. Horizontal speed of mass M /2 particles is 2h sin ¢o7. Horizontal speed of mass
M particle is zero.
Vertical speed of mass M/2 particles is h[l + @] — —h. Vertical speed of mass M particles is h.
Kinetic energy 18 T' = Mﬁz[l + 22—2 sin? ¢]. The square of the frequency is
9 2gc[b — ho]

T e 200 — ho)7 (191)

Now using that (b — hg)? = ¢? — a? we have

2gcv/c? — a?
2 _
Y S e ey (192)

1.29 m/mo02j2 T

Let us remind the relevant formulas for particle orbiting the central attractive force ~ T%
1. Angular momentum L = mrzq/; is conserved.

2. If the potential energy is given by —& and total energy is equal to —F, £/ > 0 then the particle orbits the curve

o p
0) = T (193)
where
LZ
_ = 194
P=am (194)
and
2L2E
21— 195
€ — (195)

Now if the energy less then zero the orbiting is finite. Otherwise it is infinite.
Let us denote the velocity of satellite just before ”collision” with Mars v and the velocity of Mars was V = \/%.
After ”collision” the velocity of particle is @ = 27 - .
The energy after the ”collision” is
2 2

mu « mv «
E=— -7 =3 +3—2m7? (196)

If before the interaction velocity of the satellite and Mars was directed opposite to each other £ > 0 and satellite will

go to space infinity.
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To discuss the case of general directions we will need useful formulas
et

E = 197
a+b (197)
and
2abma
L? = 198
a+b (198)
Then the energy after colliding (in assumption that V and 7 were parallel to each other) is
. a 2a
E=—[]——+4+1-2 1
b[a—l—b+ a—l—b] (199)
This energy could be negative. And the square of angilar moment is
a
L? = 4amb[l — , | ——]* 2
b= S ) (200)
Eventually the largest distance is
i (y a ’ (201)
1—e¢ 2(a +b)
where

2a 1 a 2
EZ\/l_S[Q a—l—b_l_a—l—b](l_ 2(a—|—b)) (202)

1.30 m/m02j3 T

a).T = kdx = k’lél—l. Now 2L should be substituted by %. Eventually we have kL.

1 L
b).
T(@) = k(L — 1) (203)
T= e

and

m dT

== 204

9= (204)
Solving this with boundary conditions: s(0) = 0 and T'(!) = Mg we have

B (m+ M)g mgz?
So(z) = (1+ i Yo — TIE (205)

and So(l) =1+ %ﬁ. c). Now it is useful to introduce new variable D(z,t) = S(x,t) — Sp(x). Wave equation for
D(z,t) contains [4/ % as the speed of waves. Plus boundary conditions D(¢,0) = 0 and Mb(t, l) = —klD'(t,1).

Using first constraint we construct our solution in the form

jwt

e sin(px) (206)

Then the other constraint yields
m

tan(pl) = Ml (207)

and also w = pl4/ % d). M =0 yields p = . ”A half of the wave”.
m = 0 naively yields p = 0-no oscillations at all. But this is too naive. We will present correct answer after the
intermediate case m << M.

In the case m << M we can expand tan and get p = %\ /3 (here we are interested in the low frequency). As was

expected in this case w = «/%. The last step is to normalize D(#,t) in the way that amplitude of the oscillations of

the mass M become finite. Or
D(z,t) = ei@t§ (208)

Now we can simply take the limit m = 0 and get the usual result for pendulum handing on the massless string .
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1.31 m/m03ml1 T

a). Third Newtons low for orbit of radius r > R

5 mMG mM.G
mwr = —5—+ (r — R)? (209)

where w is the frequency of Earth w? = J‘%S,G. This equation could be rewritten in the way r = (R

1 M,
=g+ TRIEE (210)

Obviously 1t has one solution for ¢ > 1. Really starting at £ = oo and when going to & = 1 RHS increases from 0 to

infinity. Thus 1t crosses 1 at explicitly one value of x.

b). Taking % = € as a small parameter we understand that z¢ should goes to 1 when € goes to 1. Or, in other

words, when £ is finite (approximately 1) quantity £ — 1 is small. We would like to rewrite the previous equation in

the form

62(1‘—1)3(1‘2—1—1‘—1—1) (211)

2

According to the previous speculations we could find the answer in the leading order by treating & = 1 and looking
for (& —1):
1/3
=1+ (g) (212)
Numerically (if e = 8) € =1+ 1072 and (r — R) = 110%km.

¢).Using angular momentum conservation we could find square of angular frequency of small oscillations

MG MG
02 — 302 — 9[22 5 21
3w [ 7“3 + (7“— R)g] ( 3)
We are interesting whether Q2 > 0 or not. Rewriting this we will get
2 2¢
-— 214
e 2
Using our equation for £ through € we can reexpressed the result only through xi (equivalent inequality)
324+ >0 (215)

Thus we have that orbiting is stable for large @i (when particle is far from the Earth) and unstable otherwise. The

infernal point is when
432 42=0 (216)
In our case, when &€ = 1+ (%)1/3 we have
32+ H T+ =54+ 0(%) <0 (217)

The orbit is unstable.

1.32 m/m03m2 T
a). Second Newton’s low
ME=mgsind+ (218)

(our ¢ has the value of usual g but directed ”downhill” )

and the same low for angular momentum

I = a[7 x 7] (219)
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with without slipping constraint

?[1 + Maz] = —m¢sind

Hence effective force (RHS in the Newton’s low) is

1

mgsinf|l - ————~
7ol

= g?sinﬁ

in the case [ = %]\4a2

b). Once again second Newton’s low
MR=T7
plus low for angular momentum
= a[®@ % []
plus without slipping condition
= a[®@ x 7]+ [¥ x R]

(R = O-center of rotation) yield

?:M[ﬁxﬁ]

1+ MIa2
and
@ x R] R] _ 0
R Ma
Let us denote A as
2
= W ==

Then introducing complex cartesian coordinates on the plane » = x + ¢y and v = & + iy the equation became

+ (A2)*v =0
with solution -linear superposition of

AeiAﬂt 4 Be—iAﬂt

Obviously this is orbiting (arbitrary point as center) with frequency

AQ
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1.33 m/m03m3 T

a). We will assign the gas such quantities as field of pressure, field of density and field of velocity. We also assume

that our process is adiabatic, or
Pp~7 = const (232)

Let us consider small (pointlike) volume of air. Tts acceleration ¢ (as a hole object is)

U= pa@—z (233)
We can also connect velocity of air with gradient of density using conservation of mass equation

fl—f + grad(pv) =0 (234)
More convenient for us form of this equation is

% + pgrad(v) =0 (235)
After all we have

log p + d(p~ ' OP) (236)
Using first equation one will have (¢ = p?~1)

log ¢ +vPopy " Ap =0 (237)
Expanding around p = rhog one will get usual wave equation with

L) (238)

Po

b). Obviously at the boundary velocity should never be nonzero (vacuum can not appear and particles can not
penetrate through the wall). Thus P = 0 at the boundary.

Eigenmodes are

59 = An, iy poe™ (M) cos( T cos( T ) cos( ) (239)
Here w?(n) = U§22n2

We should note that wave equation is the consequence of all equation we wrote. But there is also additional

condition: number of particles should not change with time, or

/d%ap =0 (240)

This condition kills only the mode with w = 0 (without spatial dependence).

c). If the pressure in the cube is P(¢) then density there is %po and amount of gas (mass) which has to leave
0

the cube is (in linear in § P approximation)

L3 pod P
gm = — 2000 (241)
7P
This mass has volume (inside the tube) equal to
Sxpg = dm (242)

Here z is a length of the tube of air from cube. We should not worry about negative z- we could add to this volume
L3P

-3 . But from the Newtons low
yPo

arbitrary volume from tube to make it positive. Now & =

mi = S(P — Paim) (243)
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Here m = pgSi-full mass of air inside the tube and Py, is the pressure outside the tube. We will introduce now new

variable p(t) = P(t) — Patm. Then equation of motion is

P+ *p=0 (244)
and
2 _ LS (245)
KT

2 Electrodynamics

2.1 e/e98j1 V

From the equations of electrodynamics in media

VD = 47p (246)

VB =0 (247)

V x H = L(47j+ D) (248)
VxE=-1B (249)

D =<¢E (250)

B = uH (251)
j=oE (252)

for the case of the plane wave of the form E(r,t) = Ee®** ! H(r,t) = He!*~! unit magnetic permeability g = 1

and zero external sources p = 0 we get

kD=0 (253)
kB =0 (254)
ik x H= 1(—iweE + 470E) (255)

ik x E = —1(—iwH) (256)

and the immediate consequence

2 4 2 / 4
C W C W

For given numbers one computes

k= \/1/36102 * (2.5€92 % 50 4 ¢ % 4 * pi x 210 % 2.5€9) = 0.75 + 0.46¢ (258)
and { = 2.2¢em.

2.2 e/e98j2 V

See problem e00;3 for derivation of the intensity of radiation of an accelerating charge. The condition w < % implies
that the size of radiating system is much less than the wave length, therefore the approximation €003 is valid:

EF
3c3 3c3

The magnetic dipole moment is suppressed by the ration v/c, therefore the intensity of its radiation will be

wl?
Im X Ie - (260)
c

I = (/\l%wzl)z (259)
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2.3 e/e98j3 V

Just near the surface
1
E=Ey+ ﬁ(3|p| cos0 — )
Since inside E = 0 we obtain charge density

o= Eoi cos 8
4

and the field which acts on a charge but not created by this charge is
3
Fopi = Eg—cost
2
Therefore the force

F= / 27wd cos B cos 0, % cos L, 43 cosf = 3E§R2
0

2.4 e/e98ml1 V

From
o Linlt=r/e)

# c r

integrating the current in the limits 4/ (t¢)? — #* we get

A, = e tlog — (te)” — 2° +tc _2 (te)? — 2?
¢ —/(te)2 =z 41t ¢
and
Hy=-0,A, = _22_oz (te)? — 2?
c2x
and

(te)? — w2 + tc

—/(tc)? —x? +tc

B, = —0,A, = —Zlog
C

The limiting cases are read from the expressions above in an evident way.

2.5 e/e98m2V

(261)

(262)

(263)

(264)

(265)

(266)

(267)

(268)

Since the magnet will attract 'magnetic charges’ to the boundary of the media with infinite magnetic permeability in

such a way to cancel the magnetic field, they will create the field 27o, in this field the charge o0 A is located, therefore

the force
F =2n00A

(in the problem M is given. It is o).
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2.6 e/e98m3 V

a. The field of dipole is
)P - Pr?

r

H=
From the field at the equator, neglecting # = 11°, we get
p=HR?*=0.5(6.4-10%% = 0.13- 10?" gauss units (271)
b. See e00j3 for radiation of accelerating charge.

_ 2 p? 2 (pw?sin 0)?
333 3

c. In plasma the dispersion relation for the plane wave is

= 350 gauss units = 3.5- 107°Wt (272)

47ng?

n=1/1

(273)

mw?

(it is immediate sequence of Maxwell equations together with action of field on the charges with the plane wave anzatz)

4 2
we= 1)L 4. 10°H 2 (274)
m

Since wegrtn € wepge the refraction index is purely imaginary, and the characteristic length of damping of the signal

is | = —<— a 7-10%m, that is enormously less than space scales in the solar system. Therefore, the signal is

crit

undetectable.

2.7 e/e99j1 V
a. The force on dipole is

F=FNE=aEVNE (275)
If B(x,t) = e(x) cos(wt + ¢(x)), then

<?> = %(??’)? (276)

The force is directed towards region with stronger field.

b. For the wave in complex notations , when E, = Re**~i%! and Ey = Im ethT=ivt imaginary part in the
polarization will effectively mean, that the p = aF is directed not along E but at an angle tané = g—,l,, then there is

non zero force acting on this rotation dipole from the magnetic field B. Therefore,

F="%a"E (277)

c

c. From
mi +yma + mwir = qF (278)

for £ = Ee'™! one gets

E 1
== (279)
m wjy — w4 1w
the real part
2,2
of =L Ho X (280)

m (@3 — ) 72

has maximum at

w=1/w?—qwpy (281)

27



2.8 e/e99j2 V

Stress energy tensor T'= —2%—5 from the lagrangian £ = —ﬁFWF‘“’ 1s
w1 (e + lgWF,mF’m (282)
4r 74

It’s space components are the flow of momentum (3x3 pressure-tension tensor):

1 1
Cap = 1 (—EaEﬁ — HoHg + iaaﬁ(ﬁﬂ + Hz)) (283)

Due to the interference between the external field and the field from the charge there is flow of momentum throw the

spherical surface separating the charge

Fu= [ ousdng = = [[ang (=0 + 1)s + 05) + 3620200 ) = g (284)

where the integral is taken over S? around the charge, with p, = E<** and n, = E4. Therefore, the momentum flows

away from the charge in accordance to the force acting on it.

2.9 e/e99;13 V

Due to rotation the star looses energy with power

d [ Jw? 2 plwt
22 ) =—_p=_=2 285
di ( 2 ) 3 3 (285)
from Jww = —P and T = —f}—gw we get
31T
H = §?CSJ, (286)

3 TTme3
Bar =\ 55—z — = 016 10'"gauss (287)
And
QED m?c? 14

thus Byge 18 stronger in & 30 times.

2.10 e/e99ml1 V

Since the sphere contains charge,due to rotation it has the magnetic moment. For the classical sphere the relation is

@ 5

— 289
H= 50l (289)
where L is the mechanical momentum. In the magnetic field the sphere precess
Jw = [pw x B] (290)
with the frequency Q2 = % = gﬁi‘; = %%, which leads to
Q 47?c?
— = 291
M wBA (291)

The polarization of this dipole radiation is circular.
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2.11 e/e99m2 V

Let the radius of the wheel 1s p. The resistance of a separate spike is r = Ap, of a separate segment on a circle is

R= /\p%. The resistance between the center and the ending of one of spike is

5 1
reff:r+r/4+2R: Zr—i—iR (292)

When the spike passes the magnetic field, it creates induced electrical field, which causes current, which dissipates.
: 1
U=-®= §pr2 (293)
The rate of loosing of the kinetic energy is

d Ju? 2 1
dJe U (g L (294)

dt 2 _Teff o 2 P Teff
therefore the change of velocity due to passing through the wedge of one of the spikes is

_(BpH?
w(t) =w(0)e *ress (295)
Since there 1s no picture, not loosing generality, let us assume that the angle of the wedge 6 is less than 2?”
The angle depends on time like
¢i(t) = ¢?%(1—6‘°‘t), (296)
where a = gf?;. If ¢(o0) less then than the angle of the wedge, the wheel will stop, having still the same spike in

the magnetic field. If it is greater, the wheel will leave with this spike the region of magnetic field with the angular

velocity w;q1
wiy1 —w; —af (297)

Then it will rotate freely until the next spike enter the magnetic field, an the process of slowing down will repeat with

the same functional form as (295).

2.12 e/e99m3 V
By definition of the electric permittivity the following relation holds for a flat layer in the perpendicular electric field

Biot = Begr + Epol (298)

Eext Eext
et Eror = , =1+4 299
1+4ra’ tot € c +dma (299)

Epol = _47TaEtota = Lot =

Then, aF;,: has a sense of the specific electric dipole moment per volume. In the 2D picture this distributed electric
dipole moment creates homogenous field, and therefore the problem is solved exactly (symmetry of the disk and Gauss

theorem is exploited).

Epot = =5 =470 Eo; = =270 Bt (300)
T
and therefore, inside the disk
1 2
Biot = Eege = By 1
T 14 2ma T 14 (301

Outside the disk the field is the superposition of the dipole field and the external field
3PPV — PP
F=TFuvit Puy= B+ ° L )r5 v (302)

where

_ ,e—1 2 Fx _la—lﬁ
7 =R T4e 0T 941 (303)
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2.13 e/e00j1 V

One can solve the Laplace equation with the given boundary conditions on the circles in 2D, using the methods of
conformal mappings, or one can just note, that two opposite charges with 2D logarithmic potential have circles as
the curves of constant potential. Let the potential on the left circle be —¢g, on the right ¢y and we will choose such

charges and positions for them to create such potential on given circles. Let F = (£p,0) be position of the charges.

¢(r) = 2q(log |7 — F|+ log| 7 + T7|) (304)
The equation of curve of constant potential const = o = e¥ is
2 2 2
9 s+ 1\ 5 da
from which the position of its center
a?+1
b=
Py (306)
and 1ts radius is
2
R=p22 (307)

Solving for p, o in terms of R, b we get

1
p? =b> — R% a= E(\/bz—Rz—l—b) (308)
and the capacity is

q 1 1

C:%:ZW

(309)

At large b it agrees with the naive estimation (if one neglects the displacement of the charges on one wire due to
the field of the other wire)

1 1

Cnaive — T T op_pR<
4 log(2=E)

(310)

2.14 e/e00j2 V

The gradient of magnetic field causes the appearance of the circular electrical field, which cause the current, which
creates magnetic moment, which interact with the the gradient of the magnetic field and slows the circle.
a nlab’c

E = —03, B, I =nb’cFE =
2c 2c

1
v0, B; w=-15 (311)
e

ma?b’e
2c2

The gradient d, B for the solenoid is obviously proportional to the field from the one, the nearest circular loop

mio=F = —pud,B = (0, B)*v (312)

2nlr r

(r2 + 22)3/2

9.B=n (313)

where r is the radius of the solenoid and n is the density of loops. Rewriting the differential equation with respect to

z from ¢ with ¥ = v'v and integrating we get

A(mo) ma2?e [ 2rnlr?\’ /Oo dx ma’b?e (2mnlr?\? 1 3 (314)
muv) = = -
2¢? c o (224 r2)3 2¢? ¢ 7> 16
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2.15 ¢/e00j3 V

From the Lagrangian

1 1
———F P — <At 1
16mc * 2 (315)
follows the equation of motion
4
0 = =g (316)
¢
which in the Lorentz gauge 9, A* = 0 yields (07 — 9?) A’ = %7 with the solution
. 1 [ it —|y—
Alt,y) = - / it=ly=zlfea) o, (317)
¢ |y — |
Further than in the wavelength region the wave can be considered to be plane with
o X _.'>]
ﬁ = 7[ J 1
’R (318)

and £ = %[ﬁ x 7], and the energy flow P = ﬁHZW. At some point there are two contributions to the total field
from two different sources. They are averaged over the time with <[cos(wt) + cos(wt + ¢)]2> = 1 4 cos(¢) The phase
shift is contributed from different phase source supply and from different path of propagation ¢ = a + %sinﬁ sin ¢,
where a = m in the current problem. Thus, the answer is

dP o g (Y wA
70" 13 O T (5) 1+ cos(er + Tsm@smqb) (319)

2.16 e/e00ml1 V

As in €98)1 we get

wis  wwdrno

when ‘ZT—WU > 1 we get
Vi drow
k=i = (321)
by boundary conditions we get that at the surface y, z with the wave going in the plane y, z
kyO = kyl (322)
and
ki = ko + kg(nf = 1) (323)
then, since transversal component of B and F is continuous we get
nb —nr|?
_ | z 324
nt +nr |’ (324)
where nl¥ = ’Z—z for transversely polarized electric wave, and nZ™ = n’;zu for transversely polarized magnetic wave.
By Kirchhoff’s law
t=1-r, (325)
Then, in the limit A = fr—wg — 00 we get
0
{TE _ 9,/5%% ’ 326
VA (326)
1
tTM = 9\/2 (327)

cos 9\/2’

Thus, at § — 7/2, the polarization become transversely magnetic.
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2.17 e/e00m2 V

a. Since there is image charge inside the plane,

mi = _(2(17)2 (328)

and integrating equations of motion

2mazd 1 dt
T = 0 / 329
Vo Jo VI-1]1 (329)

b. Radiated power
2(¢8)* _ 1 ¢°

P=- == 330
3 3 6 m2xtc? (330)
c. By placing charges ¢’ at the opposite point and e” at the same point, and using E1; = Fo, D1, = D, we get
e+e =¢"/e, e—e =¢" (331)
_ e—1
then, ¢’ = — <27 and the force
e—1 ¢
Fr=- 332
g+ 1(22)? (332)
2.18 e/e00m3 V
a. From Om’s equations
Vo=—Li1ly — Lol (333)
RIy = —Lyaly — Losls (334)
we get
L L\~
Iz = Vo (ZW <L12 - L22 i) + Ri) (335)
Lo Lo
and the dissipated power is
1
(Py=35|LI"R (336)
b. From definition of inductances ®; = L;;/; and simple expression for magnetic field in the solenoid we get
Nyl
B, = HolV1h (337)
L
and
N1 NS
L = M’ (338)
L
N1 N3S
Loy = M. (339)
L
Analogously,
No .
By = HolVaiz (340)
L
N1 N3S
Lis = M’ (341)
L
N2 N3 S
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2.19 e/e01j1 V

By conformal map of the unit disk to the half plane

z—1
w(z) = P
we get that distance between cuts will be
d' = 2Rtan ?
2
where 2¢ is the angle between them on the disk, and the size of cuts will be
@ 1 1
§ =6(tan L) = =§
(tan 2) 2 cos? %

At the plane we find that the resistance is

N P
I nd'caFEs Toa Toa 8 )

2.20 e/e01j2 V

Since
dp _ quB
dt |, a Toe
we get
__qRB
T
Since
dp
— =gqF
dt tan "
and
1 1 . R -
E= - 2B(I’U == _Bav
2R cﬂ-R 2c
we get
B, = 2B

For ultra-relativistic electrons

and
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(344)

(345)

(346)

(347)

(348)

(349)

(350)

(351)

(352)
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2.21 e/e01j3 V

In the media, where k(n) = kgn = £2,

fz,t) = /dwei(w”-i'b(w_w”)%_wt)fw = /dwei(w”b(“)_w”)%_m)%/6_“”]:(36) = f(bi —1) (355)
T c

where f(&) = [ fu dwe™¢  and g = % is just the inverse ’group speed’. In accordance to its name, the pulse propagates

in the media with the velocity vy, = Z—‘g. After the media, the pulse is the same, shifted in time

Ja(20) = (& = t47) (356)

(b—1)a

c

where 7 =

2.22 e/e0lml1 T

a).
Vo
E(r)=— 357
=32 (357)
And energy
bre Vid c
E=d ~E?¢or = =2~ log(1 + - 358
/b 7 Por 200 og( +b) (358)
b). Difference in potential we denote as V5. Then E(r) = (;/T”T We also know that
o(r) = 2e E(r) (359)
That is why the charge atone given plate is
be 2e0Vod
g= d/ dro(r) = =2 log(1 + =) (360)
b olt b
The total charge is Q = Ngq where N = % -number connected plates.
Now
2megd
Q=CVo= 22 log(1+ 5V (361)
o b
Capacity 1s
2megd c 50¢pd c
C=——log(l+-)= log(1 + - 362
T og(1+ ) = 2 log(1 + ) (362)
if there are 10 plates of any kind.
2.23 e/e0lm2 T
a).
me = el (363)
Thus
el
= 4
T (364)
P = nex (365)
and
D=FE+4nP =¢FE (366)
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c=1-— =" (367)

4
2 Amne (368)

p meg

b). Tt is smaller in approximately 2000 times due to 2—:’ ~ 2000. c).

w c

Uph = = - (369)
i
dw wf,
Ugr:E:C 1—F (370)
and vg,vpp = 2, Vgr < € < Upp
d). Ok.
e). The equation to determine w, (and n through it) is
ar = A 371
- ng ( )
eventually
_ meg AT cw?
" T TirellAw (372)
2.24 e/e01lm3 T
a). Electric field is directed along the radius. It is zero inside both cylinders. Tt is equal to
bO’b
F = —
()= (373)
inside the larger cylinder and to
boy, — aoy,
Er)y= — 374
()= "= (374)

outside both of them.
b).ac, = bop-total charge should be equal 0. ¢). This system is equal to solenoid with total current I = o4alw and

field

H = pwpboy, (375)
inside. d). With the same frequency w. e). The flux inside the cylinders is

®=r(b* —a*)H (376)
Then

E=d=r(b’ — a*)pbopii (377)
From the another side

E=2nbE (378)
And additional torque is

M = 2rbloy Eb = pr(b* — a®)lb* ol (379)
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Now we see that this additional torque just shifts the moment of inertia of our system. f). At first
r X el x H = pacbopyw (380)
and directed along axis of cylinders. Then
b
L :/ 2rrdrH = pacgbopyw = /dtM (381)

This momentum corresponds to the integral of the torque.

2.25 e/e02j1 T

¢
v = 382
= (382)
Vv Vv
Z=—==—= (383)
I Q
Since Q = Qoe'™!~** then
—1i
7= — 4
o (384)
where (' is a usual capacity of the capacitor of given shape.
2me
C = 7log(b/a) (385)
E 1
L (386)
B\ Jeu
b). Kirgoff rule
Ip+1Ig = Ir (387)
and
(Io—Ir)Z1=1Ir7s (388)
Hence
AR
Ir =1 389
e ¥ 7, (389)
and
274
Ip = [h—— 390
T Y 7 (390)
The same coefficients are applied for the electric field. ¢). Once again:
hLH+1L=1I (391)
and I; = I». And also
In(Z - R)=hL(Z+ R) (392)
Thus
Z
R= 3 (393)
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2.26 e/e02j2 T

SB
2BA
M =RE)N= i =Tw (395)
2¢
Finally
RABTA
=" 396
YT T (896)
At the end of the story
2\
B="Y (397)
¢

Now we have linear equation for w. Solving it we get a result

RABTA
w = 232
2¢[I + ££2°]

c

(398)

2.27 e/e02j3 T
Thing disk is equivalent to the plane circular wire with current 7 = Mh in it. This at the z axis magnetic field (also

directed along z) has value a).

2ma’Mh
B(z) = (@@ + %)% (399)

b). The force acting on the sphere is

?:@nﬁﬂ?:w_1f?2wghzu—ﬂfgp%gjﬁifz (400)
This force should be equal to myg.
2.28 e/e02ml1 T
In the iron B = pH. In the gap B = H. From the low divB = 0 we have B = B or H = pH.
Using circulation theorem:
NI =2rRH +wH (401)
or
"= QWRNjﬂw 1o
Energy of the field is (here S is the area of cross-section )
E:%pﬂwH+wﬁE:ﬁ%Z%2%E (403)

Obviously F decreases when w increases. Thus b). try to widen

o uNI
a)' B = 27 R+ pw

w could be taken w = 0 in the last formula
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2.29 e/e02m2 T

At first it will useful to solve this problem for external field

E=F,
and for external field
z
E=Fy—
a

The eventual result could be obtained just using superposition rule.

The following useful formulas for 2D will be used:

Oqlogr = Do
,

(Saﬁ — NaNp

0a03 logr = 5

r

and

2
0,030 logr = r—3[2nan/@nv — 00Ny — SayNg — OypMa)

(404)

(405)

(406)

(407)

(408)

In both cases we assume that electric field inside the cylinder is directed along z (direction of external field). We

denote it as F(x). Then field on the boundary (outside the cylinder) is

#[cos? ¢(e — 1) E + F] + ylcos ¢ sin ¢ E(e — 1)]

(409)

In the case of homogeneous field Ey: the field inside the cylinder should be homogeneous (to satisfy divD = 0).

This field should be equal external field plus field of polarized cylinder. The possible filed of polarized cylinder are

given above. In this case we need 9,0p log r-this substitution could solve the equation.
A
#[cos? ¢(e — 1) E + E] + ylcos psin ¢ E(e — 1)] = £ Fy + ﬁ[j — 2% cos? ¢ — 29 sin ¢ cos ¢]

Really we have two equation here (for & and for g) and to unknown variables (A and FE). The solution is

2F
F = 0
1+¢

1 Eole — 1)
A= ——Fle—)R?= 2272
gEle— DR 1+c

Now we are ready to present the results:
field outside the cylinder

Ey(e — 1)R?
%[i‘ — 2& cos”® ¢ — 2 sin ¢ cos ¢]
field inside the cylinder

2Ey
1+e€
D inside the cylinder:

zly —

F =

and P inside the cylinder
e—1

P=(e—-1)F =2FE
(e—1) o1

(410)

(411)

(412)

(413)

(414)

(415)

(416)

Now we will consider the case of the field Fy%. Then there are free charge p = % = divD. And thus D = Ey7,

D= EO%/E.
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On the boundary

E E E -1
#[cos® (e — 1) oft + ft cos ¢] + glcos? ¢ sin QSM] (417)
€a €a €a
This should be equal to
E
;EoRcos ¢ (418)
a

plus field of polarized cylinder. We will use 0,059 logrz®2” and also d, logr and %2 dg logr

The eventual result for electric field outside the cylinder is

EoR FEoR%(1 — EoR*(1 —
§ 201 eos ¢ _0 (1-¢) [2 cos ¢p+g sin ¢]— u[? cos? ¢{& cos ¢y sin ¢} —2 cos ¢— (& cos g+ sin ¢)](419)
a 2ear 2ear3
Inside the cylinder electric field is
Eol‘
o 420
E— (420)
D s
Eol‘
P —— 421
P (121)
and P is
@m (422)
ae
2.30 e/e02m3 T
The density of protons is po(r) = —=—=.
Let p(z) be the density of electrons. Then electric field induced by electrons
1 r
E(r) = ;/ d€p(§)2mg (423)
0
The magnetic field
v r
B(r) =2 [ deple)2me (424)
0
The electric field induced by positrons
1 r
Er) = ;/ dépo2mé (425)
0
In the point where p # 0 al forces acting on the electron should compensate each other:
Ep=FE—uvB (426)
or
| depzne =(1— ") [ deple)ome (427)
0 0
Result 1s
1
— 428
o(r) = — 0 (128)
From the other side we know that
| demi@pns = [ agpte2ne (129)
0 0
Thus
1 1
= = 430
plr) 1= 2?0 vrrd (1 — v?) (430)
only for r € [0, rgsqrt]l — v?] and 0 otherwise.
Voltage difference is
To rp
| depom = [ depmpne =0 (431)
0 0
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2.31 e/e03ml1 T

a). Using that

A (¢t —7) (432)

(r,1) I/y _d
r 1) =
pio —y Vai4r?

2

where y* + % = ¢%*t? we can determined the potential

T t 242 _ p2
Al ) = B0 g XYL g0y (433)
DR YT
Then
ploct
|B(r, t)| = |0, A| = O(ct —r) (434)

rVe? — 2
The force (repealing) per unit length is

puliet
r/c2t? — r?

At the moment ¢ = r/¢ (the first moment e.m. wave reach second wire the force is infinite) because we turn on the

F= O(ct —r) (435)

current unsmoothly. b). Similarly to the previous case (1 = %”, Z2+rt=c2t-1)%)
# d Ydeb(t —vVx? 472

A(r,1) :MO/ — et —T)—7) +2ﬂ/ zbt = va? +ri/c) (436)

Then B
bro(t — 0t —m— brt b bre(t —
By = bt =r/e) ittt = /) ' _br_breft =), )
clet + /c?t? —r?) Vet —r? et — 1)+ /P — 1) —r? c r

And force is F' = I(t)B. Since we turn on current smoothly the force is smooth as well.
2.32 e/e03m2 T
a). If ¢ = —%@Q and is located on the line between center of the sphere and charge @ at the distance r = % from

center of sphere towards charge then V' on sphere is zero.

b).By Newton’s third low the force acting on the sphere is equal (abs. value) to the force acting on the charge Q.
Conducting sphere with charge @ on it could be substituted by the point charge @ locate in the center of the sphere
and conducting sphere without any charge. The last one could be substituted by the charge specified in a. Thus the

forces are
attraction
kqQ akQ@?
= 4
(R—71)?  R?—a? (438)
repealing
kQ?
3 (439)
Result is the repealing force
kQ? aR3
1— 440
R2 [ (R2 _ 02)2] ( )
c). The electrical potential at the distance [ from the center of the sphere and at the angle ¢ (¢ = 0 is a symmetry
axis) is
1 1 1
o(l,¢) = kQ[ ] (441)

__|_ —
I \/RZ+12—2Racos¢ \/aZ—I—R—le—QRacosqb
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Thus electrical field on the surface [ = a 1s

0 1 a(R? — a?)
F=——"=kQ[|—= — 449
ol Q[a2 (R?+ a? — 2Ra cos ¢)3/2] (442)
We know that density of the charge at the surface of conductor is ¢ = Feq where k = ﬁ Result
Q. 1 a(R? — a?)
A 443
o(¢) 4r [a2 (R? + a? — 2Ra cos ¢)3/2] (443)

Obviously negative charge will first appear at ¢ = 0 when R = 3a.

d). At zero approximation (only one sphere with potential V4 on it) the charge on the sphere is Qu = 4megally.
Next approximation: we have one sphere very far from other and could consider it as a point charge of )y value. Then
second sphere has charge Q1 = Qo — £Qo = Qo Réa.

e). At the next step we have to consider on sphere as the point charge @y in it’s center and once more charge

— Qo at the distance %2. Since this distance is already quadratic in @ we can neglect it and repeat our speculations

from d. substituting ) instead of ¢Jy. Result is

a
Q@ = Qoll — R + ﬁ]
2.33 e/e03m3 T

The vector, pointing charged particle (in the -y plane) is

eE

mw?

By definition
P=Nd (445)

where d is dipole moment of produced of one (negatively) charged particle: d = e Now

-

(444)

e?N
=¢eo(l — 44
(W)=l = (146)
and
e2N
=4/1— 44
n(w) e (147)
As well known speed of light in the medium is ¢ = 1/n = % or
k2 e?N
—=1- 448
w? eomuw? (448)

Dispersion low is

w(k) = 1 [k2 + ‘222 (449)

Obviously the plasma frequency is

e?N
_ 450
Wp I (450)
b). Equation of motion (for complex velocity vector)
E
bt wpy = — (451)
m
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Solving this one gets

eF(z,1) Ciwrt
= 7 w 459
" w(w + iwr) + Toe (452)
Hence
2N eNrg
=gl — 453
€= <ol eomw(w + iwr) + €0 ) (453)

(As T understand phase of « is just the phase of rg)
¢). The minimal frequency should satisfy equation
2N eNrg
_|_

eomuw(w + fwr,) €

(1-

)=0 (454)

3 Quantum Mechanics

3.1 q/q98j1 'V

If the the hamiltonian Hy is perturbed by V then it is possible to find the expansion of the eigenstates |i)of H = Hy+V

over eigenstates of Hy, which are denoted |i0> and have energy E?:

iy =i |i%) (455)

J

(Ho+ V)Y aij |j0>:EiZcij 159 (456)

J

In the zero order c?j = d;;. In the first order

Vi
% =%~ prl g (457)
7 7
Thus the expectation value of the operator O in the state |s) is
O iVig +O:, Vi
(s]Os) = O,, —Z%E‘éhr()(vz) (458)
P J

where the matrix elements are meant to be taking over the states |i0>. The ground state is doubly degenerate as well

as the first excited state. However, in the sum the contribution will be only from the diagonal term. Since for the

oscillator
nh

nn—1= 459

Tnn-1= [ 5 (459)
we get the answer:

AR
0lz0,|0) = ——— 460
(0] 0. J0) =~ (160)

for any of two ground states.
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3.2 q/q98j2 V

From
K d
- %) =F 461
2m dlezj—i_a (z)y ¥ (461)
it follows that the jump of the derivative at each delta function is
Wt =y (462)
where o = 22120‘. The solution to be found in form Ae=*1*l B sinh(kz + f), Ce~*#l for the regions to the left, between
and to the right of the bands respectively. Gluing the logarithmic derivatives we get the system of transcendental
equations
k—kcoth(—kL+ f) =« (463)
—k —kcoth(kL + f) = « (464)
from which the solution for & and the ground state energy F = —% can be found. In the limit L — 0 we have
kcoth f = « (465)
Expanding coth & near this point we get
sinh? f = kL (466)
from which follows the answer
2mLa
K’ k?
EF=— 4
2m (468)

3.3 q/q98j3 V

Since 5.5, = %((Se +.5,)% =52 — SS) the eigenstates coincide with the eigenstates of the total momentum S = Se +.5;,

which can take value 0 or 1 with degeneracies 1 and 3 respectively. The eigenvalues, respectively, are:

1 3 3 1

~(S(S+1)— =) =—-"ah’ —ah® 469

s (s65+0-3) =2 Lo (469)
The interaction of the magnetic field with the spin% particle is %;ﬁc o' B;, where is the gyromagnetic ration (dimen-

sionless number) and g = 2 for nonrelativistic electron. Since m, > m. the interaction of it with the magnetic
field could be neglected in this problem. In the basis |0,0),|1,0),|1,1),|1,—1) in the notation |J, M) for the total

momentum the hamiltonian takes the form

—%a %/,L 0 0
1 iy a0 0 eB
—H = 2 4 = ah = 4
h 0 0 Lo o |7 T M T ome o
0 0 0 tia

and the evolution operator e~ % restricted to the upper left block, where is ground state, is

1
sin 2t + o coth) , Q= 5\/;@ + a? (471)

1, .
e4ztoc + ios

) it o
—l0] —— o ——
([ /ﬂ2+a2 /ﬂ2+a2
and the probability to remain in the ground state is
2

P=1- ﬁ sin? Ot (472)
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3.4 q/q98ml1 V

a) The ground state is |g) = |m1) |m2) with my = J1, ms = —J2 to maximize Sy, — Sa,.
S? = (S1 + S9)? = ST 4 52 4 2(51, 59, + %(51+52— + S1-524))

Only first three terms contribute into expectation value on the ground state, and thus
(g]S%|g) = Ji(J1 + 1) + Jo(Jo + 1) — 2J1.J

Using matrix elements of operators

(m 41 Ly Im) = /T= )T+ m+ 1), (m =1L |m) = /T m+ 1){ + m)

(473)

(474)

(475)

it is easy to decompose the tensor product of SU(2) spin Ji, J2 representation into the direct sum of the irreducible

ones (the adding of moments). The notations below are |J, M) for the total momentum, and |mq) |ma) for separate

projections of the particle angular momentum on the quantization axis.

b) For J1 =1,J, = % starting from the highest weight and acting consequently by L_ we get

13)-mfs)
)= (o)

1) o)l

Reverting the expansion we get

ol4)- d(33)- 13 3)

The outcomes are J(J + 1) = {14—5, %} for J = %, % correspondingly with the probabilities %, %

3.5 q/q98m2 V

Use the Born approximation to consider scattering on the potential V(r) = Voe=(r/a)”,

or [ dk e
do="— | —=6(E;— E d ra
o o / @) ( t) ‘/ zV(x)e

using
dFE
P = K do
kh
and
3 iqr 2m ~ :
d°zV(r)e'?® = — rdrV (r)sin ¢r
7 Jo
and
/ rdre” 2 sin qr = \/—Ea?’qe_%
0 4
we get

do 27 1 k*m1 2my/Ta _ 4%a? 2
= _ e 1
dQ ~ hv (27 BT K\ 0 4
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(476)

(477)

(478)

(479)

(480)

(481)

(482)

(483)

(484)



b) Integrating over angles is straightforward with ¢ = 2k sin % and gdg = k%sin @dtheta and the result is

2 1 k2m 1V2 m3a® 27 ] _ Q?na;:aQ (485)
7= hv (2m)3 A% k O 4 k2q2 ¢
with ¢pmaee = 2k
71'2‘/0%4 —2k2%4?

¢) The approximation is valid when 1}
|gal > 1 (see Landau-Lifshitz).

<« qa Also the equation for do is not justified when

3.6 q/q98m3 V

a) From the perturbation theory we know that the second order perturbation of the ground state is always negative:

|V0n|
==y o (487)

which means that the second derivative over the parameter is negative (the first derivative is given by the first order
perturbation theory). If one wants to use hint it is also straightforward. Take point X and the ground state |A), with
ground energy E(:\) Then, by since the ground state should minimize the functional (| H |¢) we get

E(\) < </\‘ Hy + \H, ‘/\> </\‘ Hy + AH> ‘/\> F (A= A) </\‘ s ‘/\> = BN+ (A= A) </\‘ s ‘/\> (488)
Therefore
EQ) = EXN) < (A= X) </\‘ s ‘/\> = (A= NE(N) (489)

and this means concavity.
b)
For a = 0 the matrix

0
1 (490)
b

o O =
= o O

The eigenvalues are {1,1+b}. Take for example b > 0 the opposite case is analogous. The ground energy is 1 — b and
the ground state is (0,1, —1). The first order perturbation is given by the matrix

0 1 b
100 (491)
b 0 0

which convoluted with ground state gives zero. Thus, the first derivative is zero at a = 0. The second will be always

negative. Therefore the energy will decrease as a increases.

3.7 q/q99j1 V

In the non relativistic approximation there 1s no spin-spin or spin-orbital interaction. Therefore the wave function can
be written as a direct product of the spin wave function by the coordinate wave function. Two spin 1/2 particles can
combine either in the total momentum 0 state with the symmetrical spin function or in the total momentum 1 state
with the antisymmetrical spin function. Since the total wave function should antisymmetrical because of grassmanian
nature of the fermions, we obtain that the coordinate wave function should be symmetrical for S = 0 state and
antisymmetrical for S = 1 state. The angular momentum in the ground state of the hydrogen molecule is zero. The

corresponding terms of the hydrogen molecule are denoted by 12;’ and 3XF respectively.

'S = X6t (r1, 7o) (492)

ny
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PSh) = Xy et () (493)

In each case, in the perturbation theory as a trial coordinate wave functions we can use the symmetrized /antisymmetrized

products of the wave functions of the separate atoms. Denote protons by the letters A, B, and electrons by the numbers
1,2.

Uia

H=Ki +Ky+Ua(r1)+ Ug(r1) + Ua(r2) + U (r2) + Ur2(r1,72) + Upp (494)

2 . . . 2 . . .
where K; = —%Ai is kinetic energy, Uy g(r;) = —m is the interaction between the electrons and protons,

is the interaction between the electrons, and Usp = is the interaction between the protons.

_ e
= —|7‘1—7‘2| lra—rs]

The trial wave functions are:

1 e
E(QSA(H)QSB(W) + ¢a(rz)op(r)) = NG

In the first order perturbation theory the difference between energies of the |+) states is given by the difference of

[+) = (I4B) + |BA)) (495)

the matrix elements (| H |+£).

b) Plugging the expressions for |+) to the Hamiltonian we get the difference

SE={(+|H|+)—{(—|H|-)=(AB|4E + 2U,, |BA) + (BA|Upa + U12 |AB) + (AB|Uap + U1z | BA) , (496)

Since it is composed from the matrix elements of the wave functions for the separate atoms the overlapping of them

is proportional to e~ F45.

c) and the mean energy

1
Em = 5 ([ H [+) + (= H [ 7)) = 28+ (AB|Upa + Uiz + Upp [AB) + (BA[Uap + Urz + Upy |AB) (497)

where Upp = Ua(r1) + Up(r2) and Upa = Up(r2) + Ua(r1). The cross terms represent interaction between between

atoms. In the dipole approximation the interaction energy is

(diRap)(dsRap) — did2 R4
Rip

(498)

and therefore is proportional to dyds/R3. But the average dipole moment vanishes. Therefore, only the second order

perturbation gives nonvanishing result, that is U.ss (Rap) ~ RZ%.

3.8 q/q99j2 V

It is convenient to represent the Hamiltonian in the following form

"= %((Sl + S+ 534 54)7 — (S1 + 93)% — (52 + 54)°) = %(J(J +1) = Jis(Jis+1) — Jaa(Joa + 1)) (499)

Then we can classify all states by consequent adding of momentums. First add in the pairs Ji3 = S1 + S5 and

Joq = So + 54 and then add the pairs.

The result Jiz X Joq =211 |J), where J is the total momentum and the degeneracy is 2.J + 1.
0x0=!]0) H=0

1x0=3]1) H=0

0x1=21) H=0

Tx1=1]0),21),5]2) H=-2-1,1.

For any spin the ground state is obtained in the variant with spins added to the maximal one. So, it has angular

momentum 4./, the degeneracy 8J + 1, and the energy

%(4J(4J—|— 1) —4J(2J + 1)) (500)
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3.9 q/q99j3v V

In the limit V§ > % the probability of transition

2

2 12| [ 50l SN | :
= %%ﬁg l /0 e”’xiaox sinkx| + /0 e_”’xigox sin kx ] , (501)
where
R k2 h2p? R k2 h2p?
ka = 7, Vo + - + hw = e - + hw = - (502)
and
/a €% sin ke = ap =+ ! (e!EPHR) _ 1) = 240 (i) (503)
0 k? —p* = (pxk)? p p?
1s computed to be
2r m 1 21 ,a? g2a
w= —— "2 = 504
b T 27 a 20 o V) (504)
3.10 q/q99m1 V
The hamiltonian is
H=a(55 — 351.55.) (505)
where S are half-pauli matrices and
hZe?
o= EaLE (506)
The eigenstates are
1 1
++) =) = (=) + [+-), = (+-) = [-+) (507)

V2 V2
with the eigen values a(—1/2,—1/2,1,0) respectively.

a) The initial state |[+4) is eigenstate. Therefore it only acquires the phase e~ |++) and the result of measuring
S1z + Sa; 1s always 1.

b) The initial state is

S )0 1)) = () + =)+ =) + ), (508)
which evolves to

SF )+ e F o) ke )+ |- 4), (509)
Projecting onto eigenvectors of S1, + 59, we get that the outcome with the result 1 is possible with the probability
cosz(%%t) and the result with the outcome —1 is possible with the probability sinz(%%)

c¢) The classical dipoles rotates smoothly with preserving the same direction for the a)-case and rotating with its

projection to the X-axis equal to the expectation value cos(%%t) in the b) case.
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3.11 q/q99m2 V

The electronic configuration of different electrons is specified approximately by showing which orbit each electron
occupies with notation like 1s2s or 1s2p. The total configuration is given by specifying the total S spin of the orbital
and the total L momentum of the orbital. They conserve separately in the ” LS-approximation” but are perturbed
by relativistic LS-interaction. The exactly conserved quantity is the total momentum J = L 4+ 5. Given L and S the
resulting J could run from |L — S| to L + 5, and for each J the corresponding state is degenerated 2J + 1 times over
the directions of J. The configuration is displayed

2+, (510)

where instead of L = 0,1, 2, 3 the letters S, P, D, F .. are used.

Two electrons can combine into total spin S equal to 1 or to 0. The L is defined by the second electron, which in
s-state gives 0 and in p-state gives 1.

The possible states in the problem are:

155,281 for the second electron in the 2s shell. P2 Py,® P2 Py for the second electron in the 2p-shell. The
degeneracies are 2J + 1, which gives respectively 1,3,3,1,3,5.

The lowest energy should be S-state (L = 0). The total spin probably should be 1 than the spin wave function
i1s symmetrical and the space-time wave function is antisymmetrical which decrease the energy due to repulsions of
electrons. The Hund rule states that the minimal energy of the states with the same electronic configurations in terms
of filing n, I-shells has the term with:

First S — max, then L — maz

Which agrees with the proposal for the minimum energy of 35;-state.

May be the maximal energy will be of the term ' P, for the same reason.

The strongest decay process should be due to the electric dipole radiation E1 from 2p shell to 1s shell: *P; —! 5.

The 3P07172 state could decay into 3S; due to the E1 process. Just for the reference the probability is

403
w= gl (511)

It seems, that the decays from 1S5 and 3,51 states are impossible due to E'l-process (which is space-parity negative).
The parity of E-photon is (—1)7, the parity of M-photon is (—1)*!. But from 35 it seems possible to do with one
electron emitted in M 1-wave (which is space-parity positive wave). From 'Sy state the 1-photon decay seems to be
impossible. That should be the longest level. (And it is a little bit upper 25;7).

3.12 q/q99m3 V

The Alice photon 1 is a[+); + 8 |—),. Entangled with the photon [®), 5 = [+, =), 3 — [=,+), 5 it gives rise to the
3-photon state a(|+ 4+ —)55— |+ — +)123) +8(— + =) —|— — +)). Given orthogonal basis of states for the 1st and the
2nd photon, we can expand the total 3-photon wave function over this basis, where the coefficients of the expansion are
the wave functions of the 3-rd photon. After measurement the state falls into that basis vector which was measured.
Since the basis of states for the 1st and the 2nd photon is the orthogonal the coefficients up to a scale can be found

by taking the scalar product. For each case j = a,b, ¢, d the relation
|6)3 = (P15 ((l+ + —)1a5 = [+ = H)12g) T 8=+ =) = |- = +))) (512)

after explicit substitution gives

|¢>g = -« |+>3 - |_>3 (513)
|6)5 = —a [4)5 + B 1), (514)
1605 = 48 |+)5 + a =), (515)
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|65 = =B |+)5 + a|=)s (516)

Therefore, to obtain the same state from the 3rd photon that Alice initially had for the 1st photon, Bob has to rotate

the incoming photon by the matrices —oy, —o3, 01, —toy correspondingly to the a,b,c,d cases.

3.13 q/q00j1 V

_ 12z —ik'z ikz \ |2 ) 4>k
do = = <e V(x)e >| (s = B4) s (517)
dFE
&Pk = dok? 25 (518)
kh
do 4m? o° . 9 °° psingr 1 ..
= h4—(]2|/0 drV (r)rsingr|?, /0 T dr = 77e 1 (519)
v ( )—L b—ﬁﬁ =\ (520)
T e T omm “=
do A
= e exp(—2Aq) (521)
3.14 q/q00j2 \%
_ |V0n|2 . nh
6E__ZEH—E0’ (n=1lzln) =1/ 5 — (522)
There are three non-vanishing matrix elements (0000001100100}, (000000V010010) , (000000177001001):
SE L o I (1+1+4) (523)
= ——c¢
2hw (2mw)?
3.15 q/q00j3 \%
In the plane zy, while B is along z and B, = B:
1 1
A:—i[rB], B =rot A, A¢Z§7°B, A, =0 (524)
1 e \?
=5 (r-24) (525)
where p is the momentum —ihd of a free particle. Then eigenvalues of p on the circle are 7%". The total answer
h? R%¢B ., ¢hB
F = — 2
2mR? (n 2¢h ) 2me (526)
3.16 q/q00m1 T
q00m1 Problem 1.
The energy of the state |n,s > is w(n+s—1/2) (h =1).
Thus the levels [A >=|n,s >= | —1/2 > and |B >= |n+ 1,s >= |1/2 > are degenerate. At the first order of
perturbation theory the splitting is the difference between eigenvalues of the perturbation hamiltonian H; = xS,
< AHA> < AH B>\ 0 o /g2 (527)
< B|H\|A> <B|Hi|B> | \ oz 0

And the splitting is just /ﬁ
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3.17 q/q00m2 T

q00m2
Let B be along z axis. Then consider for states
|1 > ®|1 >
2 2
| L 3| L
2 2
=l >0l - 5> - 3> 0l3>)
V22 2 2 2
: (|1 >®|+1>+| 1>®|1 >)
V22 2 2 2
It is also useful to express 275.75, = (se + 5p)? — 3/2 First three states are already eigenvectors with eigenvalues
a =+ |B|(8 4+ 7) In the basis of the last two vectors hamiltonian has the form
-3 —¥)|B
a  (B=7)B (528)
(8 =718 «

And the eigenvalues of this matrix are —(a + /(22)2 + (8 — 7)|B|)?2)

3.18 q/q00m3 T

q00m3 At let us remind the explicit form of eigenvectors of angular momentum 1
3 0
[l >= —e'¥Sinf
8T
3
[0 >= EC 0s0

3.
| —1>= —e7"¥Sind
8T
Splitting of representation 2 into two 1 has the form

2,2>=[1> @|l >

1
2,1>=—(1>®[0>+]0> 3|1l >
| ¢§| | | I1>)
1
[2,0 >= %(|1>®|—1>+|—1>®|1>—2|0>®|0>)
1
2,—-1>=—(-1>3/0>+0>|—-1>
| ¢§| | | | )

2,-2>=|-1>Q|—-1>

This result is the simple consequences of the symmetry constraint and of the constraint that [2,0 > should be

orthogonal to
1

V3

If we are interesting only in 6; = 83 = 7/2 then

[0,0 >= N> —1>+—1>&|1>+]|0>|0>)

2,25= eilerted
T

12,1>=10
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31, . ’
- i(p1—p2) —i(p1—¢p2)
2,0 > o \/6(6 +e )
[2,-1>=0
2, -2 >= ie—i(wﬁw)
’ 8T
And the result is
3 2
dP = d@ldﬁzdgoldgoz(S—ﬂ_)z[Q + gcosz(gol — ¢9)] (529)
Or eventually
dP 3 1
i = ﬂ[l + gcoszgo] (530)
3.19 q/qujl \%
For the potential
1
Vg, 22) = §Mw2x% + Ad (w1 — x2) (531)

find the probability of scattering of incoming particle ’?”2 with oscillator transited 0 — 1. With

21 [ dk
w = 7;/ %(5(E22 — EZf — hw) <k, 1|‘/p€7‘t|pa 0> (532)

where |p) = ¢?#%2 v is the incident velocity and

W\, - 2\ 7 , M
= (%) i = (F) e 0= (533)

™ 2h
we get
2rm (1 Nqi _a 1 X%¢E _4
— il e - 1
RN <k1 T (534)

where k1 0= £4/p? — 2”;#, and ¢; = p — k.

3.20 q/q01j2 V

From
R d?
T 9mda?

it follows that the jump of the derivative is

Y+ ad(z)y = By (535)

YT =y (536)

where o = 222“. At each band the wave function is a;e’?” + b;e”*?. From the gluing condition between functions

from the left a;, b; and the right side a,, b, of the delta-function inserted in the point z the following relation follows

1— & @ =2ipr .
()z( A )( ) (537)
bl m@ 1+ﬂ br

Multiplying two matrices with 2 = 0 and # = s we get the transition matrix M from right side of the whole potential

to the left side. The transmission coefficient is

1

T=——
| My |?

(538)
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And

2 2
« « ;
7‘[ — 1_ 2ips
. ( 2ip) +<2p) c (539)

The reflection coefficient is proportional to Mis, we need to find when it vanishes. The equation is
(1+6%) + (1 —b%) cos2¢ + 2bsin2¢ = 0 (540)

where b = % and ¢ = ps. From it follows the solution ¢ = § + %, where tand = %

3.21 q/q01j3 V

Yi(t) \ cos gzﬁ ?sin f’zﬁ 1 (0)
( o () ) B ( isingzﬁ cosgzﬁ ) ( ¥2(0) ) (541)
gBT = (542)

The probability to remain in the same state is cos? ¢, where ¢ = 7 - Thus answer for a) is

71-2

Palwaysup = (COSZ ¢)N ~1- ﬁ (543)

The probability of overturn (regardless of whether it was up or down) is p = sin? ¢. The probability of k overturns is

(1 — p)N=%. We need to sum up over even number of overturns.

S )N = 0 (- 2] (544)

k=0k—ecven

3.22 q/q01lml1 V

Explicitly the Hamiltonian H = —po; B; has the form

B ( cos 6 sin fe~ 1% ) (545)

sinfe’®  —cosf

with eigenvalues —puB{1, —1} and the normalized eigenstates correspondingly

cos Le—1¢ sin Le—i®
wiw):( 2 ) 1/)0_(¢):( 2, ) (546)

sin B COs B

The B field rotates and the resulting Hamiltonian could be expressed as a result of the unitary transformation of

the original Hamiltonian:

H(t) = U HoUyg (547)
where
Ho= —uB ( C?SH sin 6 ) (548)
sinff —cos@

Uy = ( 6:) (1) ) (549)

That corresponds to the transformation of the eigenstates

Vi (¢) = Uy i (¢ =0) (550)
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For the Hamiltonian which does not depend of time the evolution of the eigenstate with energy E is

. Byt
i = Hy,  ¢(l)e = o(t =0)e” 7 (551)
Now, turn on the rotation of the Hamiltonian and try to find the solution
ihW(t) = UJy HoUp(r) ¥ (1) (552)
in the following form
Byt _ipt
\Ij(t) = A(t)e " U¢(1)¢3— + B(t)e g U¢(1)1/)0_ (553)

Substituting in the equation of motion we get:
AYY 4+ By® + UUY(AYS + BY2) =0 (554)

Evaluating the matrix elements of the operator U in the basis |1/)i> we get the equation:

i 9 g s 8
A _ l¢ cos? 3 cos & sin g A (555)
B sin % cos % sin? % B

with the solution

A(?) ;e [ cosfsin % + cos % sin @ sin % A(0)
=e'2 ] ) ) (556)
B(t) sin @ sin £ — cos 0 sin % +cos £ B(0)

9 9
-
2
at ¢ = 2m the system returns into the same state (of course with the usual time-phase factor). The probability to be
excited 1s 0 7777

What is strange is that we got the exact solution, not approximate one.. Where is mistake? And since sin

3.23 q/q01lm2 V
a,b)

The atoms are neutral. They can have dipole, quadrupole,... multipole moments. The energy of the dipole in the

field of another dipole

3(d17°)(d27“) — Tzdldz
5

U(r) = (h5T)

-
is proportional to dyds /7>,
For the ground state the dipole moment 1s zero. The contribution to the energy appears from the second order of

the perturbation theory.

SE = — Z M (558)

o — Ey — Ey
To the ground state it is always negative. By dimensional reasoning d ~ ape, where a; 1s obtained from nf; = eT—2,

b
therefore a, = nf—;, and d ~ hf}ff, and F ~ ”%24. Thus
4

R\ B
OF ~ — (—) —4r_6 (559)

me ) me

c) For the first excited state the perturbation to the energy will be given by the solution of the secular equation.
Since the non-diagonal matrix elements of the dipole moment do not vanish, there will be non zero contribution already

in the first order of perturbation theory.
OF ~ = (560)

d) The characteristic time of processes inside atom is the period of the emitted light. Therefore the retarding could

be important at the distances larger than the wavelength of the emitted light.

A~ — o~ — (h61)
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3.24 q/q01m3 V

The probability of scattering per time unit for the plane wave normalized for 1 incoming particle contained in the box

L x L, with the wave function |ir) = % i) = ie”’x and the outgoing particle with one particle per unit volume (the
wave function is |f) = ¢'*¥) is given by
27 d’k 1
== | —=6(E; - E)— ) |? 2
T [ e = B IV ) (562)
The probability of scattering for just one particle is obtained
L 2r [ d% 1 2r 1 m [T 1
= _ = — —(SE—EZ— '2:_ gy do sin
p=uwi= i [ GssblE = BNV IDE = Emts [ a1V I (563)
1 1 n=N (2n+1) 2 1 n=N 2
- Vi 2 :/\2_ A / iqz - zqa 22nqa — 564
TR P Sl M PP P ol (564
e a’ | 1 sin2(N —l—a—)qa _ (565)
4aN |qa cos &
(566)
Using relation
1 [* sin? A¢
— dé =1
my ) = 3 (567)
we substitute at %sm;;% =4(£) at A — oo and get
1 Ta ra "X
LI e = Soa + TS dlga - r(2k+ 1) (569

k=—o0

Note, how N has been cancelled. Therefore the probability of scattering is the sum of scatterings to discrete angles
with the condition ga = (2k + 1)wa or ga = 0.

or 1 m [T Ta Ta e
2
——— dBy—psing | —9 — ) — (2 1
hv (2m)2 B2 q=ksinf [ 9 (qa) + 3 n:z—:oo (qa — m(2n + 1)) (569)
Therefore the answer 1s
2 1 m|m w 1
_ 4247 mr o, n
P e |28 (570)

2
l2n+1]<2 /1 (ﬂ(2n+1))
a

That was the probability of scattering at all angles. If we want to compute only backward scattering then we need

to take one half of the contribution from the second term (in large brackets).

3.25 q/q02m1 T

Equations of motion are
#(t) = ilH, 2] = p() (571)
Plt) = ilH, p] = —2(t) + V2 (1) (572)
With condition

2(t = 0) = i (573)
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p(t = 0) = po (574)

Thus the solution for ¢t < 0 1s

z(t) = costiy + sintpg (575)
p(t) = costpg — sintzg (576)
For t € [0, T
2fo
z(t) = costig + sintpy + (1\/__7{02)[COS wt — cost] (577
2 o . .
p(t) = costpy — sintig — (1\/:%[10 sin wt — sin ¢ (578)
And fort > T
2fo
z(t) = costig + sintpy + ﬁfl cos(t =T+ ¢) (579)
2f, .
p(t) = costpy — sintig — (1\/__7{02)14 sin(t — T+ ¢) (580)

; B sinT — wsinwT (581)
any = cos T — coswT’

and

A= \/1 + cos?2 wT + w?sin? wT — 2(cos wT cos T + wsinwT'sin T') (582)

c). We know that E = (0] % |0). Since at ¢ = 0 & has no C-valued part there is no jump in energy for ¢t = 0.
Similarly to avoid jump in energy when we will turn perturbation of we assume that z has no C-valued part at ¢t =T

as well. Using exact solution for w = 1 this means sinT = 0. Using this and

E(T) — E(0) = % ((1{57{002)) A? (583)
we have in the limit w — 1
E(T)— E(0) = fIgT2 (584)

3.26 q/q02m2 T

q02m2 a). x; j11 = %,S =1/2,5= 51+ 52+ S3 b). Since o << 1 then S = 1/2 for new vacuum too. Since P;; does
not change S, we will have two similar vacua for S, = £1/2.

Thus vacuum will have form |a, b, ¢ >= a|+,+, — > +b|+, —, + > +¢|—,+,+ > with a+ b+ ¢ =0 for S = 1/2 and
219 = 13 = L/3 + &. Then hamiltonian is

L kL?
=001 -2 o+ Mo ake - Cp, 4 by - 2py (585)

For —-b-c,b,c;, to be an eigenvector the following equation(s) should be satisfied
Hl—b—ebec>=FE|—b—cbc> (586)
or (here h = —3J(1 — <) + k’[% + 3£7))

hb + 3%51: = Eb (587)
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3aé
=0

he + =Fec (588)

It is important here that third equation is just the sum of first two (no additional constrains). Then F = h + 0‘75 (and

the state is ) Now we can minimize with respect to £:

o

=+— 589

T (589)

but in the both cases a = b and only one eigenvector (plus the same for S7/5). So the ground state is | — 2a,a,a >
€= ta/ak

3.27 q/q02m3 T

q02m3 a). A, =0 for z < 0, Ay, = Byz for z € [0..d] and A, = Bpd for z > d

R .
H= _%[aﬁ + (9y + i4y)?] (590)
We will restrict ourselves for the wave functions of the form ¥ = ¥(x) and thus Jy =0

hz
H=——[0? - A? 1
o2 - 2] (591)
b). When # < 0 and ¥ = 5% we have no constrains on k. When # > 0 and ¥ = ¢k then we have a constraint
B =k + (Bod)? ¢). Critical k is equal to Bod. Classicaly magnetic field will rotate (turn the particle and if k¥ < Bod

then it will return back). At first v = % Then £ = mTUQ = Byv. Thus the radius of the circle is r = BLD. If d > r the

particle will return back. d).
2m
r <0V =k 4 RE—ike
x> d ¥ =Te*® Then

ih?
Jy = —k(1 — R?), 0
Syl ) x <
.22
Jp = ii?:T, r>d
2m
hZ
Jy = E30x|\11|2, z €[0..d]

Elsewhere J, = 0 There is a flow along x-axis,as usual (we will see below that the flow to the left of 0 is equal to the
flow to the right of d). And there is also probability flow along y-axis, inside the strip, filled with magnetic flux.

e). Integrating Schrodinger equation fro 0 to d and taking d to 0 we get that ¥(0) = ¥(d) and 9, ¥(d) — 9, ¥(0) ~
d — 0 Thus ¥(0) = ¥(d) & (1+ R) =T and 9, ¥(d) = 9, ¥(0) & k(1 — R) = kR As a result

T=-"0 R=-—"—= (593)
k+ k

3.28 q/q02j1 T

Wayve function has form

(594)

V¥« (z) = sinh(kz) (595)
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U= (x) = ae'P” 4 fePT (596)

and
Vs (2) = Ae7HEY) (597)
Now equation about smoothness of our wave-function imply
o= %e_ipx[psinh ka — ik cosh ka] = ;ipe_ipb[p + ik] (598)
1 e . _ A i .
= %e [psinh ka + ik cosh ka] = %e [p — ik] (599)

This imply that A is a real quantity or

e—ip(b_a)[psinh ka + ik cosh ka]

" b — iF]

=0 (600)

or

pk sinh ka cosh ka
t b—a))= 1
an(p(b — a)) p?sinh ka — k2 cosh ka "

We will follow RHS of the last expression as the function of p. At p = 0 our function is 0. LHS is also zero but
this 1s not correct solution. Moreover-there 1s no such solution at all-during our consideration we divided by p and our
formula works only for p # 0. Then RHS decrease and goes to minus infinity at the point where p?sinh ka = k2 cosh ka
After that RHS decreasing from plus infinity and goes to \/2771—‘/0(1 as k — 0. There is only one possibility for this curve
doesn’t cross tan curve: its last point should below tan brunch and \/2mVy(b — a) < % (we still below the first tan
brunch).

This condition

V2mVpatan /2mVp(b—a) =1 (602)

is just the condition for groundstate to have zero energy! And our second condition

V2mVo(b—a) < = (603)

2

means that our wave-function has no zeroes and that it is the ground-state of the system.

Conclusion: our consideration demonstrates that maximal symmetry state without zeroes is ground-state and when

ground-state energy is large than zero there is no bound-states.

3.29 q/q02j2 T

i(k—muv)z

a). Plane wave ¢ = ¢**® should became ¥ = ¢ and general function ¢(z) became U= Y(z)e” ™" Now we

will also consider time dependent-wave function.

If
o A
i = [~ 4 Ul 1 (601
then
~ ~ . . 2 . .
(e, 1) = [_% + U t) = (@, )™ 4+ o y(2)e™ T 4 v (e, e (605)
Result:
Do) = d(a + ot t)emimor i (606)
b). Obviously P = |A]? and
A= (Yol [go(x)e™™) (607)
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where

==

Po(x) = e
the Hydrogen atom ground state. We do not care here about general coefficient. After all A(v) would be normalized
from the condition A(0) = 1.

(608)

R £+1 —2r . ClS
P N/ / rzdreTe_”nwgdﬁ ~ W (609)
o Je=—1 (1+ 255%)
Eventually
1
Al) = ——5or (610)
(14 *35=7)

3.30 q/q02j3 T
a). First of all we separate wave function of center of mass. Or

Vag(r1,22) = 1/)(961 —;—xz) @ Vop(x1 — 22) (611)

The Hamiltonian for center of mass is trivial (as for free particle with mass 2M) and ¢(x) is just the plane wave.

At the next step we separate spin and space wave function. Now we have to wave functions for spin zero Wq(xz)

and for spin one ¥y (z). Corresponding Hamiltonians are

Hy = 7 + 217Uy () (612)
and
PZ
Hy= 573 (613)
Eigenstates with total spin zero are
[2 . mn(z+a) 2h*(n' — 1)
v =4/ —sin ———= Ey=—F——5—+ 14
(@) ma 2¢ 4M a2 (614)

with integer n.

Eigenstates with total spin one are

Vgeog g5, (x) = 16“”, By = k_2 (615)
’ L M
with arbitrary k. The energy of the ground state is zero.
b).Since the system is in the groundstate we conclude that momentum of center of mass is zero. Then expanding
external field in the length of the system we have the following perturbing Hamiltonian

r1+ 22 1 — T2 r1+ 22

O N s e L (616)
We have to calculate
<\IJS2:1751(]€)|H1 |\I!0(n = 0)> (617)
Since S; ¥y = 0 we drop the first term of Hy. We also express cos(kz — wt) as Reitke=wt) Then we have to calculate
B 2 w4 a) 1 g,
P=4{5 - /_asm( 5 )26 pk B (618)

dx All this could be multiplied by phase factor from B(z) ~ ¢**¢ in the center of mass. Calculating this one gets

/1 cos(ka)  cos(ka) /1 47 cos ka
P = (5 — B — — (5 — B 1
S:=1\ 8raL” O[k’a +5  ka— g] Se=1\ 8raL ! 072 — (2ka)? (619)

Now probability per second is
-1 _ 472 M p? BE cos?(ka)

k(r? — (2ka)?)?
Halftime 75 is T'log 2.

(620)

58



3.31 q/q03m1 T

a). Wave function

b . (o
b= cp(—io() Z)00) (621)
evolves according to the Hamiltonian
1. . 2 . . z
H, = [51/) + pBolo, + exp(—ip(t) %)[O'x cos ¢ + oy sin (b]exp(zq/)(t)%) (622)
Using that
.9 . - P
s o, 'z 0 0 el ez 0 1
~i6() % [ t o, singlebOF = | € , , | = 623
‘ [ cos ¢ + oy sin gle ( 0 6_2%)(6_Z¢ 0 )( 0 el%) (1 0) (623)
And eventually
By + 4 B
Hrot(t) = a ot 2¢ . 1 (624)
pB1 —(pBo + 39)
In the case q/) =0 H,o doesn’t depend on t.
b). ¢ = wyt. Then H,, has eigenvalues
22 1 2
£\ 12BE + (uBo + Sw1) (625)

with eigenvectors (not normalized)

1 1
( B3+ (0Bt Lwn) — (uBo+ Lwi) )( /i@ B+ (uBat Twi)?— (uBa+ bun) ) (626)

uB1 uB1
correspondingly.

22z

Since e™* 2 preserve up-down directions we can consider 1/; instead of ¥ studying spin flipping. At the moment

t = —T spin was directed down. Time-dependent wave-function is
— 2R2 1 2
w= 4/ 2B+ (uBo + §w1) (627)
G(t) = e~ iwEHT) 1 fw(t+T) —1 698
( ) =€ N2Bf+(NBD+%w1)2—(NBD+%U/1) te + N2Bf+(NBD+%w1)2+(NBD+%U/1) ( )
nB1 uB1

Condition that at the moment ¢ = 7" spin will be directed up is

San2 ZBZ
—cot(2uT) = A s | (629)

w
c). Ground level has energy —w(t). At t = —T corresponding vector has form
1
By (630)
( o + Ol )
spin is up.

At t = +T corresponding vector has form

1
( o ) (631

spin is down.
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3.32 q/q03m2 T

a). Energy of bound state is £ = —%. Then equation which determines these states 1s
tan ¢ = —;7(/’ (632)
Vo5 —¢?
Here ¢ = ro/2mVy — k2 and ¢g = ¢(k = 0). These equation has at least one solution if RHS well defined to the right
of ¢ = %. In the opposite case there is no solution. Thus there is no solution if ¢(k = 0) = F or
2
T
Ver = W (633)
This condition coincides with the condition & = 0.
b).By the definition d; is the shift from the formula
. wl
Ry — sin(kr — ) + (k) (634)
For [ = 0 equation for §; is
tan(v2mVp + k?ro)  tan(kro 4 d(k)) (635)
VemVo + k2 k
If £ — 0 then
tan(y/2mV;
(k) = HM ~ 1) (636)
QmVQ
c). A obviously vanishes when V5 — 0 and goes to infinity when V5 — V.. d).
im .
o = k—2(21 + 1) sin? &; (k) (637)
In the case & — 0
tan(/2
o = 4n| an(v2moro) _ ro]? (638)
\/2mV0
When V — V. §(k) is not small any more. Thus
1 1
~— = 639
e T ECR, (639)
or there is pole in cross -section.
3.33 q/q03m3 T
a). Representation J = 3/2
|J=3/2,J,=3/2)=1]1)®|1/2) (640)
1
] =3/2,]. =1/2) = —3[¢§|o> @ [1/2) + |1) @ |-1/2)] (641)
1
|J =3/2,7, = —1/2) = ﬁ[ﬁm @ [-1/2) + |-1) @ [1/2)] (642)
|[J=3/2,J,==-3/2)=|-1)®|-1/2) (643)
Thus
1
(J=3/2,J,|5:|J=3/2,J,) = §JZ (644)
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Representation J = 1/2

|J=1/2,J.=1/2) = %[ﬁm @ |-1/2) — [0) @ [1/2)] (645)
|J=1/2,J.=-1/2) = %[m—n @[1/2) = |0) @ |—1/2)] (646)
Thus
(J=1/2,J.]5. |J = 1/2,Jz>:—%Jz (647)
b). Assuming that
(J, | S 1T, J2) = g0 T (648)

we can calculate gy for only one J,.

For J =1+ 1/2 we take |[J=14+1/2,J, =14+ 1/2) =|l) ®|1/2)

and thus
U+ 172,04+ 1/2|S; 1+ 1/2,1+1/2) =1/2 (649)
Conclusion
1
G+1/2 = T (650)

For J =1 —1/2 we will also take vector with J, = J. In order not to write down it explicitly we note that [S,, J;].
Let us consider all (two) vectors with J, ={ —1/2. They are

la) =1+ 1/2,1—1/2) (651)
and
[0y = |l = 1/2,1—1/2) (652)
Now
20-1
S, |a) = m |a) + «b (653)

since {(a||b) = 0 and {(a| S, |a) = 2(22ll__|_11). Let us act by S, to S, |a) once again. Using that S? = 1/4 (property of

S? = 3/2 representation) we have

1 20—1\° 20— 1
Now using orthogonality one gets
20—-1
bl S, |b) = ———~
(b] S |b) ST 1) (655)
or
1
Ji=1/2 = =7y (656)
c). Here A= and
1 1
AT =52+ W= 17— 5" = [ + 5 = 1] (657)

For J =1+1/2itis A5 = 2(1+3/2) And J(J +1) = 320 + 1)(I + 3/2).
For J=1—1/2itis AS = —L(—1/2) And J(J + 1) = =1 (2 + 1)(I - 1/2).
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4 Statistical Physics

4.1 s/s98j1 V

We consider that the massless quarks are Fermi-distribute inside the confined volume of a ball with the radius R.

Tnen, if the degeneracy factor is b = 18 we get from the pp = 0 Fermi distribution (using d®p = dQE?dFE)

T /°° E2E 4 Ry AT o
—3T Y 2rh)3 J, BT x1 37 Vaan)pt @
4 An [ E3E 4 Ar
E/2==rR% = 7R3 74
/2= 5 (zﬂh)S/O BT 1 3 gy
where
3 7
= —((2 4
e =5¢2), 2T 120
And

ERN™ [ b \T s
N=|— — :
(hc) (2471') 192

4.2 s/s98j2 V

We consider that p = —A

From the grand canonical distribution
Q+uN—E,
Wy N = € T
in the limit 7 >> |u|, when e*/T < 1 we have (Boltzman statistics)

Q= —TZlog(l _ et )~ TZe”_TEk
k k

For classical non interacting gas in the box sum the sum is readily computed with

PV =—Q=etTTY e = et/TT /d?’pd%e—%ﬂ:ws/zem m \*?
(2mh)? 2mh’

Therefore a)

3/2
P = 7T5/2.0/T (Lz)
2rh

62

(658)

(659)

(660)

(661)

(662)

(663)

(664)

(665)

(666)
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4.3 s/s98j3 V

a,b) The partition function is
7= (14 B/MN (668)

where E = gupyhH. Then
dF

F=-TlogZ, S:_ﬁ (669)

S=N (log(l +e BTy ¢ %%) (670)
The entropy S =0 at 7' =0 and S = log2" at T"= oo as it should be.
c) When the external field increase the system tends more to occupy ground state, therefore it emits heat.

3Q =T(Sy — 55) (671)
d) In the adiabatic process S is conserved, therefore

H, [Ty = Hi/T, (672

4.4 s/s98m1 V

For the ideal gas with constant ¢, the adiabatic process takes the form pVY = const, where v = Z—” The isotermic

follows from the equation of state pV = v RT'. The work is

Vs 1 v\t Vs 1 Vit
W = j{pdv Vi logv +P2V27 1 (1 — (72) ) — psVzlog 7 _pl‘/l'Y 1 (1 — (71) (673)

y—1
Since p3V3 = pa Vs (V—Q) , and p1 Vi = paVo = v RTY, and psVs = paVa = v R1T5 we get the answer

-1

T, = ( (%) ) log “Z (674)
=T (%)H (675)

and the consistency condition 52 = E— (therefore one value of volume is unnecessary to specify).

4.5 s/s98m2 V

To check whether the bose-condensation takes place or not count the possible number of particles on the excited levels
with ¢ = 0.

Vv d3p
Ao e 570
with
3p = AnV2mEmdE (677)
and
o] oc—ld
/ ix - lx = I(a)((a) = &(a) (678)
0
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equals

N = (LW) 4N2rE(3/2) = 1.2- 1017 (679)

2mwh

Since it 18 less than the given number of particles, bose condensation takes place, and the ground level is occupied by
macroscopic number of particles. Since in this approximation |u| < |E1 — Eg|, the number of particles on the first

excited energy level with ¢ =3 and AE) = By — Fy = 5~ (2)2 (22 — 1) is given

2
= J =3 (LV mT) =18-10" (680)
E |

2mwh

4.6 s/s98m3 V

The limit 7" — 0 is the limit of § = % — o0, when the perturbation theory for computing Z = Tre = for

approximately quadratic hamiltonian works.

7= /dpdx pH () _ L/dpe—ﬁ%/dxe—ﬁ<cx2+gx3+fx“> _ a3
21h 21h p2e 4

3
Z:const~T<1— ZiT—i—

15 ¢2
E—TJFO( ))

dF

c =

dE _,dS _ d(

—dT

therefore

3f
c—1—2—2T—|—§—T—|—O( %) (684)

4.7 s/s99j1 T
899j1 a).
< ne >= [6x—1]_1—3[63x—1]_1, r=(e—p)/T (685)

(H—e)fr=—-00 <n.=0>
(/’L_E)/T: <ne=1>
u—G)/T:—I—oo <ne=2>

c). ﬁ p_N/L

8m !

/j =
d). < E >= Npu/3 Substitute y from c).

V:%ffowdm<ne>(x) and o = —1

2
Q

4.8 s/s99j2 T
a). Since P = —% and F' = V f we have

P=—(1= 5o )T, (656)

b). Obviously

oP .,
5, =" >0 (687)
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Or f” > 0.

¢).(In this process we start from very small p and increase it during speculations.) We can decrease f if changing
it into a straight line! Really, at first f”/ > 0 and then f” < 0. And the straight line will be below f curve. That
straight line means that instead of pure gas with given f(7),p) there are gas and liquid (condensed from this gas).
Now we will construct f

At the point p, we understand that gas became into gas plus liquid. In this case f; = f(py) (the corresponding
pressure is the pressure of liquid with given temperature) and do not increases at all. All additional matter (gas)
became liquid. Its free energy per volume we denote as f; assuming that this quantity corresponds to the given pressure
of the gas P, = P,(pgy) or

—P=fg—pgf (pg) = fi — prf (pr) (688)

Here the density of liquid is p;. This equation determines p; as a function of p,. (* See below)
We apply this conditions by hands from the physical sense but we can change it by the condition that f we
construct should be smooth! Now we construct f and can do anything. After construction we will check or result.
So, we proceed with construction f and will check this condition afterwards.

Now we have the following equations for volumes

Vog+Vi=V (689)
and

Vapg +Vipe=Vp (690)
Finally

(fi = fo) + fapr = fipg
PL— Pg

Yy Vi P
_ Y9 R S 691
F=3ths+ (691)

for p > py and f=fforp< pg. Obviously f" = 0 and this is better than f” > 0 at first and f < 0 than.

This formulas works well until f < f. At the point p; where f = f we have to switch to f again.

We understand that this switching should occur when all our matter will be liquid. And now we will demonstrate
that this is so. Our equation is (fist check of smoothness f)

Flpr) = f(p1) (692)
(*)Using that our liquid is the phase of our gas it should also be described by our curve. We conclude that f; = f(p).
Now it is easy to check that p; = p; is the solution and

Fp) = F(p) = fi (693)

Once again, we construct f for pg < p < p and one could simply check that f(pg) = f(pg) and o) = flo).
Only one ambiguity we do not know precise value of p,.

So the equation to determine p, is our second check: f’(pg) = f'(py) and F(p) = f'(pr). We can not solve this
equation explicitly but generally it specifies p;. Now one can say that we have two equation to specify one variable

pg, but using equation for p;(pg)

_P:fg_pgf/(pg):fg_ng/(Pg) (694)

we leave only one of it.

We end with construction of f and now going to pressure.

d). Now the speculations about the pressure are trivial: P = pf’ — f and if f is smooth (with its first derivative)
then P is also smooth. And it is obvious that for p; > p > p, pressure is constant. So we change the curve with local

minimum and maximum by the horizontal line.
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4.9 s/s99j3 T

(695)

§99j3
Efficiency of refrigerator is equal to the ratio of the temperatures of refrigerated stuff and the medium outside
é _ Tmedium
Q Tr.stuff

A is a work spent by the machine, @ is the heat taken from refrigerated stuff. Ti,eqsum could be arbitrary, but large

than room temperature-the room (medium) should refrigerate(!) the machine. To minimize A Tpegium should be

equal to room’s temperature. During the process
d@Q) = —medT
and

Tmedium
A= —d
49

Integrating this equation one gets
A= mCTroomln(Troom /Ece)

And at the end heat to turn the water to ice is mA when the efficiency is Tyoom /Tice . Finally

A Toom
A= mTroom[— +c ln(

Ece ice

)]

4.10 s/s99m1 V

The first step 1s to find the equation of adiabatic process in the 7,V coordinates:

(aT) aT.s)  aPv) T (ap)

vV )s T (V,8) T Exa(v,T)  vOy \IT

In the problem Cy = const, p = "IéT (14 &%), thus at .S = const process
dT nR voa
= (1 d
/VCVT /V(+—V)V
T 1 1
vCvlog 7 = —nR (logvvf e (E - W))

If denote 1,2, 3,4 point on the PV diagram going clockwise from the left upper corner, then
Ty ="1T1p
T3 ="1Tyf

where

8 =ex _ R lo ﬁ—i—l/a 11
U U ViV

and, since Cy = const the energy of gas U = vC,T 4 f(V), where f(V) does not need to be determined

A T -+ 13-y
U_Q_ T T,

—1-8
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(698)

(699)

(700)

(701)

(702)

(703)

(704)

(705)

(706)



4.11 s/s99m2 V

Since all states have equal energy the thermodynamics of this system is governed just by the entropy S(L), i.e. log
number of states for a given L. Let [ be length in the a units [ = L/a. Then Ny = £(N +1), N_ = $(N —1).

S =logCNT =log N! —log(((N —1)/2)!) = log(((N +1)/2)") (707)
At z — oo
log z! ~ z(logz — 1) (708)
therefore
2 L?
S~ Nlog2— v = const — Va2 (709)
Then, from
dE =TdS — FdL (710)
and dE =0 we get
ds L
F=T—=-2T— 11
dL Na? (711)
The required work to stretch from 0 to L,qq 18 18
LZ
W=-A=17T7-2% 712
Na2 ( )
With stretching the entropy decreases, and therefore the rubber gives out the heat (0 > Q = TdS = A).
4.12 s/s99m3 V
The excitations w? = %k?’ obey Bose statistics with g = 0. Therefore the density of the energy per area
1 d’pe
F = - 1
(27h)? / eT — 1 (713)
with d?p = xh?d(k?) = h%d(£(£)%)3 =k’ (#) * det s equal to
L o p\*4 s
E= | — | =T%1 14
PEOE (w) 3 (714)
where
* dpxi! 7 7
1= =T(= - 715
[ E=r ()G o
and
dE 7 [T\ [T\ 1 [ p \* .
== _'r(lL R T A TG A1 716
==t (3)<(3) 7 () o
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4.13 s/s00j1 T

Using ideal gas approximation

7 = /d?’n Z A 2V esh™ (gpup H) (717)
N
Using ideal gas approximation this will be just
3 —(Bn—p)

Z= | dn(l+e” T 2esh(gupH) (718)
and

InZ = / dPne = F 2esh (g H)) = 2esh(gp, H))InZo (719)
Pressure is given by

oF olinz
P=—=- = Py2csh H 2
37 37 02csh(gpsH)) (720)

Thus

P(Hy) _ eshlgmHy) _ Zu (1) (721)

P(Hz)  esh(gupHy)  Zr(2)
Vivod-magnitnoe pole soset.
4.14 S/SOOj2 T
We deal with adiabatic expansion (inverse) of ideal gas. Second low of thermodynamics says

dQ =0=dU + PdV (722)
and

J

dU = §deT (723)
where J is the number degrees of freedom. Then using following relation for ideal gas

PV = NkT (724)
one simply gets

PV = Const (725)
where v = % = n Thus for Na n = % since J = 5.
4.15 S/SOOj3 T
a). When p < rhocr then p < 0 and determined from the equation

1
e~ T -1

E(n) = %, 2rn = kL b). When p > p.r p = 0. Distribution of particles at any excited state is given by formula from
a. with g = 0. This time N = N(T)-number of particles at the excited states and all other particles (N-N(T)) at the
ground level.

¢). Ncr is just the number of particles equal to N(T) from a. It is corresponds to the case, when g = 0, but still

microscopic number of particles at the ground level. Tt is easy to calculate N.»(T,V):

N (T, V) = VT3 2m3/? (727)

91722
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o] tl/Z
A:/O [ (728)

et —

So per ~ T3/% or v = 3/2. d). For system remains in the condensed phase A should be large enough: decreasing of
temperature should be faster then decreasing of density (number of particles) for density to satisfy p < p.r(T). We
will find now critical value for A when to remain in the condensed phase is still possible.

So we assume that system is in condensed phase, but without any additional funds: any time p is just equal to

per. Since volume of the system is constant this means

dN  3dT
~ =97 (729)
The energy of the system at critical point is just
E = VT5/2m3/221/2ﬂ_2 (730)
where
o 43/2
B:/O i (731)

Number of particles, which go away from the system is —d/N > 0. They carry out the energy %|dl\7| (here is no
difference between mean energy of the particles before same part go away or before that-they carry small amount of
energy ~ dN thus difference before or after will be ~ dN?). According to the relation £ = E.r(T, N)

dFE = AE];?N = E5dT/2T (732)
Thus

AdN dN  3dT

— =5dT/2T — = —

I 5dT /2T, I 5T (733)
Answer:
5
A > 3 (734)

4.16 s/s0O0m1 V

When two phases are present in the system at given temperature 7' the concentrations of components in them are
determined by crossing of the horizontal line 7" with the curves separating phase areas. In the given problem, while
both phases are present in the system, the concentration of x in the liquid is always three times less than that in the

gas (during boiling the concentration of A in the liquid decreases). From conservation of the total amount of A:

v = (1 —p)as + 3pay (735)

where p is the part of liquid that was turned into gas, and z; = z,z; = %
Ly —Tf 1
— —Z 736
P= o =3 (736)

4.17 s/s0O0m2 T

a).The Brownian particle started at ¢ = 0 with zero initial speed from the point » = 0.

=1 [ AP () — Srapr(r) (737)

Let

7= [ der© (735)
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Then

r(t) = /dt’G(t,t’)}"(t’) (739)
G+ 6mbG = 8(t — 1) (740)
and
Gt —t') = 0(t — t')e=0mbl=t) (741)
As a result
t
r(t) = / dt'e= b=t F (1) (742)
0
To make this result easy we can integrate by parts over ¢’ noting that (e”)’ = e Then
1 ¢ N F(t)
)= —[F(t)— [ dtfe0mbt—t) 7 743
)= sl - [ are 8 (143)
Now it is simple to calculate 7
¢ n F(t)
S(1) = dt’ —6mpb(t—t') T \" / m
i) = [ e v (144)
b). We know that in equilibrium at temperature 7' every particle (non only elementary) should have energy %kT or
3 M C
kT = = -2 t — 1— —127nbt 4
2 7 <7 O>= ot e ] (745)

Or calculations show us that energy, indeed, doesn’t change with time short while after beginning of the process. Thus
C =48MFkTnmb (746)
c).

1
<r’(t) >= - (=3 — e7 1T 4 4o 00 (747)

(6mnbM)? [ 127nb

or after several mean relax times 7 = (67nb)~!

8]‘]’\? [t — i] (748)

k could be measured through the angle in the graph < #% > v.s. t.

<rit) >=

Another solution(V)

From the equation of motion for the particle
v+ Av =, (749)
where v = 2, A = %, f= % follows the solution for the response to the f = d(¢)
o(t) = e M 1> 0; x(t) = —(1— e (750)

and by the linearity for the general f(t):!

t t
1
u(t) = / dre M) a(t) = / dr (1= e f(r) (752)
0 0
I Note, that the second formula could be also obtained directly from the first by changing order of integration:
t t , t t , t 1 ,
o(t) = / dt’/ F(r)e M= dr = / dT/ dt' f(r)e™ M=) = / d7f(7) (1= 7)) (751)
0 0 0 T 0
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In Fourie decomposition, where z, = % fdte_iwtx( ) and z(t) = [ dwz,€

Jw
w4+ A
and since (f(¢)f(¥')) = cd(t —t') with ¢ = %

Vo =

1

<fwfw’> = 271')

. i 1
—wt  —iw't _
5 /dtdt/e e (cd(t =) = %cé(w + W)

—

we get

1 1 1 c c /
dwd twt tw't e /:/d B Lt
/wwzw—l—/\zw —|—/\e c o (W) w/\2+w227r N
d
dt

and therefore <

%<r2(t)> = </ (T )dr/o > = 2/ Vdr! = %(1 gy

= 2X (v?) and at ¢ — oo the growth is (r(t)?) = 2t <U>\> = t% = tﬁ;g

is linearly growing at large ¢

The constant ¢ =

<
M2
4.18 s/s0O0m3 T
a). We will start from partition sum

Z=(14+ )14 ATV
(here A = eT) Then

F=-TlogZ =—TN[log(1+ \) 4 plog(1 4 Ae T )]
and

F -

f= v —Tlog(1 4+ A) + plog(1 + AeT )]
Now we will determine g from the condition that total number of particles equal to N:

o]
T+ r Per X

N =N]

and

L—p++/(1—p)2+4peT
2p

Ap, Tye) =

b). Density of defects is just

A p
e +A 14+ Xler

n(T)=p

¢). When T'— oo then

NT) = p™ Lt = + 0]

and

P € P 2
T _r _ = N
n(T) = T+ Tﬁ+p)+0()
When 7" — 0 then

ANT) = p~ %3 +0(1)
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(753)

(754)

(755)

(756)

(757)

(758)

(759)

(760)

(761)

(762)

(763)

(764)

(765)



and

n(T) = \/peT + O(eT) (766)
Conclusion: n(T') starts from 0 at zero temperature and increases up to ﬁ at infinite temperature. d). C'= % and
E =n(T)e. So

€ € e%
C=en(T) = —eTA"'n*(T)[1 - 767
O (767)
Finally
S(T) = pN[XeT log(AeT) —log(1 + AeT)] (768)

4.19 s/s01j1 T

s01j1 a).dQ = dU + PdV — pdN Since dN = 0 (container is closed), U = C,T,dT = 0 (where C, = £ J-

5
numer degrees of freedom) and PV = NkT'(ideal gas, N-total number of particles in the container) total heat @ =

Nleln(‘é—?) < 0-the system gives heat. b). For the first container

dv
dQ = C,dT + Nk’T7 (769)
For the second
! 7 /dv/ ! ! !
dQ' = C,dT’" + NkT v dV' = —dV, d@Q'=—-dQ, V+V' =V + 1, (770)
We want to maximize mechanical work de(P - P) = deNk(% — %) To do 1t we can maximize the

differential in the last formula treating 7" as maximal as possible and 7" as minimal as possible. In the process we
consider at first both containers had the same temperature. Then first container started to expand and it’s temperature
T decreases, when second decreases it’s volume, but increase it’s temperature 7”. The containers exchange heat dQ
attempting to increase T and decrease T’ making them equal. But 7' could not be large then T’ since at the moment,
when 7' = 7" heat flow stops. Thus system produce maximal amount of mechanical work if the expansion will be slow

and containers will be able to flatten their temperatures. Now we treat 7’ = 1" and

v dv’

dA:dV(P—P’):NkT(v— i )= JNkdT (771)
Solving this equation one has
4 1
T=T(—""F——)7 772
1(V1(V1+V2_V)) (772)
According to previous equation
W =JNk(Ty —T(V)) (773)

Obviously maximal work will be done if we stop when the volume of both containers coincides 2V = V; + V5. Then
Vol
W =JNkTy(1 — (72)7) (774)
1

c). Now we want to compare ) and . Let us introduce the variable z = % € (0..1]. Note that Q(z =1) = W(x =

1) = 0. According to the hint we can consider

dW NET,

-7 775

dx P (775)
and

dQ Nk}

- . (776)

Since % < % for any « € (0..1) and Q(1) = W(1) then W < @ for any z € (0..1).
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4.20 s/s01j2 T

a). We treat bound state of two biomolecules as a new type of biomolecules. Obviously chemical potential of the

molecule of new type is just a sum of chemical potential of the parts, shifted by bound energy. Then the grand sum is

Z=74T pa) 28T, uB) Zc (T, puc)Zac (T, ppa + pc + cac)Zpe (T, uB + pic + €Bc) (777)

We also assume that e4¢ and epe are large enough so there are no pure C' molecules and we drop Z¢ from the
sum.

We also believe that classical (Boltzman) distribution is valid here and that the energy levels of biomolecules do
not depend on their type: they are very massive and large-thus only their position could contribute. (Generally we
could also assume that partition function of boundstate is not equal to partition function of a part, but their product.

This case describes (almost) independent structures.)

Now (all partition functions are the Boltzman summ of the form 7 =3 ", e_E/T)
Na = Za(T)e'T 4+ Z4(T) Zoe ™52 (778)
Np = Zp(T)e'F + Zp(T) Zce =552 (779)
and
Ne = ZaZo(T)e™ ™S 4 25 (1) 2o 55 (780)

Generally each Z could be multiplied by Zy (for center of mass) but we absorb it to unknown N;-number of particles.

We absorb corresponding Z to p and have
1

fA - 14+ eHB—pAateEBC—€EAC (781)
= ! 782
fB = 1+ eta—pBteac—cnc ( )
b). We already used first assumption about f4 =1 when up — —oco. For n. we have
nA np
ne = - ectac + -~ e (783)

Since we know that n¢ should much smaller than ny and ng we conclude that we could drop 1 in the denominators
and get for f

1
T (7s4)
na
c). Let “BS=24c — &, Then
0l=— 1 (785)
T 140.0les
or = log 900 ~ 6.8. Using that 10000K ~ leV we have egc — ea¢c ~ 0.2eV.
4.21 S/SOlj3 T
801j3 a). Hamiltonian has a simmetry S; — —S; thus < S; >= 0. Effective hamiltonian is
N
H = (Sai-1Sailnesh(Syioy + Sai)) + Nin2 (786)
b).Hamiltonian of single triangle is
1 9 3
H= 5(51 + .52 + S1-2)" - 3 (787)
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Thus we have 6 = 3 x 2 ground states, where 3 is a number of possible choices of particle with spin opposite to other
two particles and 2 is a number of possible spins of this particle. ¢). Let Vi be the number of ground states for the
system of N triangles with given value of spin in the left bottom corner (obviously Viy does not depend on this value).

According to b. first (at the left) triangle has 3 configuration of spins with minimal energy. Thus
Vv = 3Vn_1 (788)

And V) = 1. Now we simply multiply this result by 2 as the number of different values of the spin in the left bottom

corner. Answer:
2 x 3N (789)

d). We consider < 5;S; >. Let 7 be a right corner of p-th triangle and j be the left corner of ¢-th triangle. Then there
are k = N — p — q full triangles between ¢ and j (i < j). Now we want to calculate W (s)-number of ground states in
the system of k triangles with given boundary conditions: s = 1 if spins on the boundary coincides and —1 otherwise.
We already know that Wy (1) + Wx(—1) = 2 x 3*.

From the previous speculations (slightly generalize them) we can conclude that
Wi—1(1) = Wi (1) 4+ 2Wi(—1) (790)
and similarly
Wi—1(=1) = Wi(=1) + 2Wi(+1) (791)

Or the problem is equivalent of the problem of calculating

1 2 *
(1) o

The eigenvalues of this matrix is —1 and 3 with eigenvectors

( 1 ) (793)
( _11 ) (794)

respectively. As a result Wy, (4+) = [3* + (—=1)*] and Wy (=) = [3* + (—=1)*]. Finally

and

Ve (Wi (+) = Wi (=)Vg _ (=)

< 585 >= W =3 (795)
For k = 0 we get 1 as expected.
4.22 s/s01lm1 V
a) Consider the black body radiation. From the Bose-Einstein distribution:

c_ d® ¢ 2nv? hy
de=-2—2 ds = dsd 796
TTITW 2 o (796)

From the extremum v,4, in the power spectra follows the relation

hpae = okT, (797)

where ¢ is the dimensionless numerical constant (obtained from solving the extremum equation).

74



At the low frequencies the spectrum has asymptotic

2m?
o2

dE

kTdvdS (798)

The energy emitted from the area of the size of one wavelength, during the the time interval of the one period is

d
dE = 2nk T2 (799)
v
From this measurement one can find the Boltzman constant
1 dE
=57V (800)
and the Avogadro number A = %. After k has been found, from (797) follows the formula for h:
kT
h= j‘ (801)

b) Since A is dimensionless, then whatever they mean by ”pure thermodynamics mean” one needs something that
has dimension of time to get the dimension of h = energy x time from the dimension of @ (energy). By heating a

box with photons from zero temperature and measuring the heat input one gets the relation

. (58”ié’if)4)3~ (802)

The factor V/c® can be expressed as 73 where 7 is a time for light to cross the box.

4.23 s/s01m2 V

The canonical partition function at constant pressure (we use notation P = —t, where ¢ is tension, and V for the

length)

1= T =Y (303)

from which follows

= ~TN log (e =7 4 = =57) (804)
and since d® = —SdT + VdP
o lge™ Padtia —1—166_%
V= (a_P)T =N R, B (805)
4.24 s/s01m3 V
a) In the magnetic field the particle with hamiltonian
1 e 2 1
H=— (p - “By) +—} 806
om Pz 7 7Y + 2m’ Y (806)
has energy levels of the harmonic oscillator Ej = hw(n + %) with w = %. The coordinate of the center of the circle
is y = &%, the motion is confined into 0 < y < Ly if 0 < p, < Ly%. The number of such states g = 2L7T’;i Ly%.
b) From the canonical grand distribution
Q=-T3 log(l+¢"7") (807)
in the low density regime we have
B Ep Vv eB 1 1
Q=-T) e 7 =-T———2mml)2e* =-PV 808
Z (27h)? ¢ ( ) sinh 22 (808)
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thus

1 eB 1
P = TWT(QTFTTLT) 2 6ﬁu

1

: Aw
sinh 5%

from N = —% one gets that at B =0, 2 = —NT and from y = —227% one finds

LN [(he)?
= 617 \mc

The gas is diamagnetic (Landau).

4.25 s/s02j1 T

a). Using that

p_ oF  RT a
STV T vV—b V7

we have
F = —RTlog(V —b) — % + A(T)

Function f(T) is unknown, but using that

ou
=T
and
g F
S o
v orT
we get
O*F "
C, = —TW =-Tf
or

F(T)=-CyTlogT + ¢T
where ¢ 1s unknown constant. Eventually

F=—RTlog(V —b) — % — C,TlogT + T

(809)

(810)

(811)

(812)

(813)

(814)

(815)

(816)

(817)

b). Using the low of conservation of energy applied for small amount of gas traveled from one reservoir to another:

dE =dU; —dUy = dA1 — dAs = —P1dVi + PadVs

Using that dP; = 0 we get dHy = dH; ¢).

RTV  2a
H=C"T+ — — —
CyT + V_b vV
d). From b. we know that /I = const and this explains that

or
AT = AV <W)H

So Ty 18 the temperature when (%)H = 0 Using that
RT 2a RT
dH =0 =dT(Cy + —)+dV (= - ———
ot ) + VT~ )
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(818)

(819)

(820)

(821)



we have

aT kb T —Tins (822)
oV )y (V—=0b2Cy+RV/(V —b)
where T},; = 5—1‘%(1 — %)2
At the last step we will determine AV from AP. Using that
(o8 a a
HP, V)= —(V-0b)(P+-—=)—=+P 2
(PV)= SV 0P+ ) — 4+ PV (323)
we obtain
V+Se(v—b
AV = —AP WV + F v =0 (824)

<, 2abC,

[7 (P — ) + (P + 7% + )]
For relatively large pressure (PV? > a) volume increases and temperature increases/decreases depending on T' > or <
Ent~

4.26 s/s02j2 T

802j2 a).
H B= 2(p—
7= /dy(E)zn(1+2ch(“BT Je i 4 T (825)
p—BdppgH 2u—B)ugH
Ny = /dy(E) S S (826)
+ = — T
1+ QCh(%)e”TE + 27
b). When T'— 0 p — €p by definition of u(7" = 0). Then
4TV
Ny = 2 H))3/? 2
* 3(271'7'1)3( mler + s H)) (827)
and
4nV 3/2
N_ = 2 —upH 2
S(2nn)s 2mer — ppt) (828)
c).
N=Ny+N_ (829)
and
M = (Ny - N_)un (830)
d).
3N g
=B 831
2€F ( )
4.27 s/s02j3 T
s01j1 a). B = hwM
b). System is isolated, in the Stirling approximation
nl &V 2rnn"e™" (832)
S=kinW(M)=k(N+M—-1/2)In(N+M—1)— (M +1/2)InM + Const] (833)
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Then, by definition
l_dS_klM—l—N—l 1 1

— - 4

T=aF e YN on (834)
We also assume that N, M >> 1. Then

M 1

— = 835

N e% —1 ( )

as expected. To get the same result through Boltzman partitions it 1s convenient to notice that

i i S(M — Z wfl) (836)

n1=0 nn=0 i=1

In this way our partition sum is

—hwM 1
Z:JZW:eTW(M) = T (837)
Then
N Ty e = 39
c). Straightforwardly
C, = dE hiw? N i% (839)

dT ~  kT? (e —1)2

d). This was already derived in b). Now we give alternative derivation using Boltzman partition. At first we note
that instead of coordinates F, M where S = InW (M) in coordinates T, M entropy is S =Y PInP or

—hwM

:_kz T (340)

where

Z="3" eTF W(M) (841)
M=0

This sum could be sum up:

the oo L d(TInZ)
k(inZ + Z )= k= (842)

We want to check whether
dS dSdI" kdz(Tan) dT 1

e ) 4
dE dT dE dr? df T (843)
Or in another words
d*(TinZ) _dE d T2dIinZ (844)
d1? T kTdT T oTrdr dT
according to the definition of £ = k'TleT"Z. But
d*(TinZ) d T%*dlnZ dinZ  d*lnZ
pu— pu— 4
d1? TdT dT dT + d1? (845)

is just the trivial identity!
e). Any particular configuration could be imagined as the row of objects: bosons and oscillators. Then all bosons
to the left of any particular oscillator (up to the next oscillator) belong to it. Thus no bosons should be to the right of

the "rightest” oscillator. We assume that number of the "rightest” oscillator is N -the number is not important here
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because according to our assumption all oscillators are equal to each other. Then number of series of M bosons and
N — 1 oscillators (the last is already on the right side) is just (N 4+ M — 1)!. But here all objects are equal. We have
to dived this number by number of permutations of bosons itself M! (without changing the series) and also oscillators

(N = 1)!. Result is

Wy = QLN =)

MI(N —1)! (846)
4.28 s/s02m1 T
s01m3 a).
p(h) = poe =7 (847)

Derivation: we assume that gas is classical (governed by Boltzman statistics). Then using that p doesn’t depend on
h and that ”effective” p(h) = p — mgh we derive the dependence % assuming that we consider very small volume
where we can neglect the dependence of potential energy mgh on height h. b). This is usual Maxwell distribution (it

doesn’t depends on h up to normalization )

Flp)=e T e7T (848)

c). Under strictly ideal (not classic) gas we have to understand gas governed by bose (fermi) statistics. Then effective
p(h) is still the same, but dependence p(h) is more complicated. It is the function, which expressed total number of

particles through chemical potential

dinZz
N = 849
i (849)

with substituted effective potential u(h) = p — mgh. Nevertheless this function is not elementary for both B and F

statistics.

F(p) remains the same (up to normalization). Tt is

—E(p)tn(h)

Z(T, p(h) ~

d). The same up to normalization constant which is the ration of densities at bottom and at the top. How to calculate

F(p,h) = (850)

the densities is explained in c.

4.29 s/s02m2 T

802j2 a).Using approximation of Boltzman gas: total number of protons is (Ey = 13.6 eV)

N M,T\*? 4, MpT\>'? uptuctso
_p:< i ) ﬁ+< H ) e (851)

V 27h? 27h?

and electrons 1s

Np (MeT)3/2 e (MHT)3/2 sptietio
— = eT e T

(852)

Vo \2rh? 21h?

From this moment we will treat M, << M, and thus Mg = M,. We know that at the temperature Ty = 0.3eV

number of atoms is equal to the number of free protons. Or

MyTN*? w0y (MTNY? sptuers,
( 2k’ ) r=\om) 7 (853)
Thus pe(Ty) = —Fy. To determine both quantities % and % we need once more equation.

How to get it7
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Let us remind that our Universe is electrically neutral. And that is why the next equation is

N. N,
- 854
Vv (854)

This is not a result of statistical physics, but new assumption about system we consider. Using this one could simply

gets

(855)

3/2
Ne _ Np _ o (MITNY? -z
Vv Vv

v v 2mh?

We learn that our approximation is correct since the density we deal with is e ~ E~% times (1) than critical one.

Ne
2V

Density of free electrons is equal to density of free protons and to the density of Hydrogen atoms and is ). From

Plank formula density of photons is

Npw 73 /Oo dzz?
0

et —1

Vo 9x2e3p3

(856)

Let us compare N, and N,,. Roughly speaking
N 3/2
e _ M gyt
Nph T
At T =T, = 0.3eV we have

(857)

N, 511%%
~— &
Ny 0.3

Or N << Npp.

P x10% x 1070 << 17 (858)

4.30 s/s02m3 T

s02m3

a). S=logyg

where ¢ is a number of microstates with given energy. At the zero temperature energy is also zero. If S # 0 then
there are more than one ground states of the ice’s hamiltonian. This is of course possible, but unusual.

b).There are 2N bonds (this could be get by simple combinatorics, but also from main formula of chemistry H20)
and each bond has exactly 2 quantum states. Result g = 22 and S = 2N log2

c). Let us consider one particular oxygen atom (and bonds end on it) and forget about all others (according the
assumption). There are 2% states of such system if we want to take into account all other bonds as well). The number
of configurations, when exactly two of hydrogen atom are close to this oxygen atom are 6 = ‘21—% (bonds are different,

no matter in what oder we will select them). Fraction is

6 3

=3 (859)
Now

N
9= 7 log6 (860)
My result is twice larger than Pauling’s!!!!

4.31 s/s03m1 T

TdS =d@ =dU 4+ dA (861)
where dA = — fdz. When z is fixed dA = 0 and

ou
TdS =dQ = C(x)dT =dU = 3_TdT (862)
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or

ou

and thus
A
U= %TZ + g() (864)
where g(#) unknown arbitrary function.
At the constant zero temperature
TdS=dQ =0=dU + f(z,T = 0)de = [¢' — f(=,0)]dz (865)
thus
_H 2
9= 5% + Const (866)
Now
A
vz A8 B (867)
2 2
After we have determined exact form of U (up to additive constant) we can calculate S:
Ax) 1o
TdS =dU — fde = dT[A(x)T] — da:[—TT —aT + BaT) (868)

Let us divide both sides of these equation by 7. Now for the right side to be full differential following property of S
should be satisfied

028 028
oTdx  OxdT (869)
or
/
Alz) = Aéx) (870)
or
b). A’ =0 and A = const!
a).% —a-— fz
c).% = A
S:AT—i—ax—gxz—l—B (871)
d). Zero tension f = 0= px — oT + f2T = de[p+ BT] = dT[a — Sa]
a8 05  9S a— Bz
=T — =7— 4+ — = 2
Cr <6T)f:0 i el (872)
Cp=T[A+ (0 — ) 222 (57
= o — fBr
r p+ BT
Using that f = 0 implies & = uigT then
a?y?
Cpl=TA+ ———= 874
K =T+ ] (s74)
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4.32 s/s03m2 T

a). Since we assume that density is uniform we substitute the spherical star by a cube of size L with periodic boundary

conditions. Than &k = 2”% and total number of electrons N should be equal to %Tng’,

2\ 2 1 1 /372N\?
B = _ = — B ——
= () m=w (V) 79

And total kinetic energy is

where

ne 2/3
p= [ e e AP (3 / (576)
0 2m 10m 4
b). Solving the equation
Or(Up +Uy) =0 (877)
we simply find
4/3
R= % 3 ! M3 o ppL/3 (878)
25/2m;/2meG 4

c). n. remains the same. E; now is equal to

2. 3N \'?
Ef=ck.=c¢c 7TLn = 2me (m) (879)

and total energy is

ne 3(2rh)eN [ 3N \'/®
E=4 dnn’ck =
71'/0 nn’c 1 (471_‘/) (880)
d). This condition is Uy < Uy (this condition doesn’t depend on R). It yields
2 5(2mhe) 3\ /3
M= > 821/3m5/3(; (E) (881)

4.33 s/s03m3 T

a). Sum for classical particle is
Zg=Y T (882)
n
Here n 1s a set of quantum numbers ny, ng, ng which specify quantum state of particle by

_ 2mngh

ks
L

(883)

and V = L3. Then partition sum
T S s s

could be substituted by integral over d”. Really using variable k instead of n we will get at first sum over lattice with

scale @ and if m and T finite sum goes to integral as scale of lattice approaches zero.

Taking this gaussian integral now we will have
Zu = /d?’ne# = V/A3 (885)

as expected. b).
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Going back to the sum we have

Vi _uo
Z = FZ@

h

(886)

where we sum over 3D lattice with size (roughly) T The sum could not be substituted by integral if the function

we want to integrate changes sufficiently at lattice scale. Exponent change sufficiently if # changes by 1 and our

approximation breaks if L\/% ~ 1 or large. Result

hz

<~ s

(887)

c). Two particle partition sum for quantum particles differs from the same sum for classical particles because in the

quantum case particles are identical.

Thus for bosons

Using that Thus for bosons
2F,(m) = En(

we have

for bosons

nm n

d). Using explicit form of Z

1
= SZ(m, 1) + 22 1)

1 1 _m
—Z(m,T)? = = Z(—,T
2 (m’) 2 (2’)

2T)]

97~ (m, 2T

v
Z(T.V,m) = 4
dlogZ 3 1
E=T" =2 —
ar -~ 2 [+1:|:Z—1(m,
dE 3 1
:—:—1
C=ar 2[+1j:Z—1(m,2T)]i

As was expected (thanks to Daniel) at the classical limit 7 — oo the pure classical result restores.

41+ Z=1(m, 2T))?
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(889)

(890)

(891)

(892)

(893)

(894)

(895)



